如圖,△ABC是⊙O的內(nèi)接三角形,AB為⊙O的直徑,點(diǎn)D為⊙O上一點(diǎn),若∠ACD=50°,則∠BAD的大小為


  1. A.
    35°
  2. B.
    50°
  3. C.
    40°
  4. D.
    60°
C
分析:連接BD,由AB為圓的直徑,利用直徑所對的角為直角得到三角形ABD為直角三角形,再利用圓周角定理得到∠ACD=∠ABD=50°,利用直角三角形兩銳角互余,即可求出∠BAD的大。
解答:解:連接BD,
∵AB為圓O的直徑,
∴∠ADB=90°,
∵∠ACD=∠ABD=50°,
∴∠BAD=90°-50°=40°.
故選C.
點(diǎn)評:此題考查了圓周角定理,熟練掌握圓周角定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是邊長為2的等邊三角形,將△ABC沿射線BC向右平移到△DCE,連接AD、BD,下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是銳角三角形,以BC為直徑作⊙O,AD是⊙O的切線,從AB上一點(diǎn)E作AB的垂線交AC的延長線于F,若
AB
AF
=
AE
AC

求證:AD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玉林)如圖,△ABC是⊙O內(nèi)接正三角形,將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)30°得到△DEF,DE分別交AB,AC于點(diǎn)M,N,DF交AC于點(diǎn)Q,則有以下結(jié)論:①∠DQN=30°;②△DNQ≌△ANM;③△DNQ的周長等于AC的長;④NQ=QC.其中正確的結(jié)論是
①②③
①②③
.(把所有正確的結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D是BC邊的中點(diǎn),點(diǎn)E在AC的延長線上,且∠CDE=30°.若AD=5,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,則∠ABD=
120
120
度.

查看答案和解析>>

同步練習(xí)冊答案