如圖所示,在平面直角坐標(biāo)系中,△OAB三個(gè)頂點(diǎn)的坐標(biāo)O(0,0)、A(3,4)、B(5,2).將△OAB繞原點(diǎn)O按逆時(shí)針?lè)较蛐D(zhuǎn)90°后得到△OA1B1,則點(diǎn)A1的坐標(biāo)是______.
做A1M⊥x軸于點(diǎn)M,AN⊥x軸于點(diǎn)N,易得△A1MO≌△ONA,
∵A(3,4),
∴A1的坐標(biāo)是(-4,3).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,D是AB的中點(diǎn),E、F分別是AC、BC上的點(diǎn),且DE⊥DF,求證:AE+BF>EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知,如圖,正方形ABCD中,點(diǎn)E、F分別在邊BC、CD上,且∠EAF=45°,AG⊥EF于G,EG=2,F(xiàn)G=3,求AG的邊長(zhǎng).小萍同學(xué)靈活運(yùn)用旋轉(zhuǎn)的知識(shí),將圖形進(jìn)行旋轉(zhuǎn)變換,巧妙地解答了此題.請(qǐng)按照小萍的思路,探究并解答下列問(wèn)題:
(1)把△ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,得△ABH,請(qǐng)?jiān)趫D中畫(huà)出旋轉(zhuǎn)后的圖形;
(2)判斷H、B、E三點(diǎn)是否在一條直線上,若在,請(qǐng)證明:△AEF≌△AEH;若不在,請(qǐng)說(shuō)明理由;
(3)設(shè)AG=x,利用勾股定理,建立關(guān)于x的方程模型,求出x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,ABCD和DCGH是兩塊全等的正方形鐵皮,要使它們重合,則存在的旋轉(zhuǎn)中心有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為創(chuàng)建綠色校園,學(xué)校決定對(duì)一塊正方形空地進(jìn)行種植花草,現(xiàn)向?qū)W生征集圖案,圖案要求只能用圓弧在正方形內(nèi)加以設(shè)計(jì),使正方形和所畫(huà)的圓弧構(gòu)成的圖案,既是軸對(duì)稱圖形又是中心對(duì)稱圖形,種植花草部分用陰影表示,請(qǐng)你在下邊三個(gè)正方形中畫(huà)出三種不同的設(shè)計(jì)圖案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:梯形ABCD中,ADBC,∠ABC=60°且BC=8,梯形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)a度后得到梯形AEFG,a為銳角.
(1)如圖一,旋轉(zhuǎn)過(guò)程中,若線段AB與線段EF始終有交點(diǎn),求a的范圍;
(2)如圖二,若B點(diǎn)落在線段EF上,小剛同學(xué)用三角板量得F、G和D三點(diǎn)在同一條直線上,由此,他得到四邊形ABFG是平行四邊形,你能證明嗎?請(qǐng)寫(xiě)出理由;
(3)小剛最后又發(fā)現(xiàn)中的平行四邊形ABFG是菱形,請(qǐng)求出梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,Rt△ADE是由Rt△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到的,連接CE交斜邊AB于點(diǎn)F,CE的延長(zhǎng)線交BD于點(diǎn)G.
(1)試說(shuō)明∠ACE=∠ABD;
(2)設(shè)∠ABC=α,∠CAE=β,試探索α、β 滿足什么關(guān)系時(shí),△ACF與△GBF是全等三角形,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列現(xiàn)象中屬于旋轉(zhuǎn)現(xiàn)象的是(  )
A.鐘擺的擺動(dòng)B.飛機(jī)在飛行C.汽車在奔跑D.小鳥(niǎo)飛翔

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

27、如圖,按要求涂陰影:
(1)將圖形①平移到圖形②;
(2)將圖形②沿圖中虛線翻折到圖形③;
(3)將圖形③繞其右下方的頂點(diǎn)旋轉(zhuǎn)180°得到圖形④.

查看答案和解析>>

同步練習(xí)冊(cè)答案