如圖,某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的一側(cè)有一建筑物,當(dāng)光線與水平面的夾角是30°時(shí),塔在建筑物的墻上留下了高為3米的影子CD;而當(dāng)光線與地面的夾角是45°時(shí),塔尖A在地面上的影子E與建筑物的距離EC為15米(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號(hào)).

【答案】分析:過(guò)點(diǎn)D作DF⊥AB,則圖中有兩個(gè)直角三角形即△ABE和△AFD,若假設(shè)AB=x米,則在△ABE中可求出BE,又EC已知,所以BC的值就確定了為x+15,在△AFD中,DF=AF•cot30°=3(x-3),所以根據(jù)BC=DF則可列方程,只需解方程即可求值.
解答:解:如圖,過(guò)點(diǎn)D作DF⊥AB,垂足為F,
∵AB⊥BC,CD⊥BC,
∴四邊形BCDF是矩形,
∴BC=DF,CD=BF,
設(shè)AB=x米,
在Rt△ABE中,∠AEB=∠BAE=45°,
∴BE=AB=x,
在Rt△ADF中,
∠ADF=30°,AF=AB-BF=x-3,
∴DF==(x-3),
∵DF=BC=BE+EC,
(x-3)=x+15,
解得x=12+9
答:塔AB的高度(12+9)米.
點(diǎn)評(píng):本題考查的是解直角三角形的應(yīng)用,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2005•煙臺(tái))如圖,某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的一側(cè)有一建筑物,當(dāng)光線與水平面的夾角是30°時(shí),塔在建筑物的墻上留下了高為3米的影子CD;而當(dāng)光線與地面的夾角是45°時(shí),塔尖A在地面上的影子E與建筑物的距離EC為15米(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的一側(cè)有一建筑物,當(dāng)光線與水平面的夾角是30°時(shí),塔在建筑物的墻上留下了高為3米的影子CD;而當(dāng)光線與地面的夾角是45°時(shí),塔尖A在地面上的影子E與建筑物的距離EC為15米(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年北京課改版九年級(jí)(上)期末數(shù)學(xué)試卷1(解析版) 題型:解答題

如圖,某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的一側(cè)有一建筑物,當(dāng)光線與水平面的夾角是30°時(shí),塔在建筑物的墻上留下了高為3米的影子CD;而當(dāng)光線與地面的夾角是45°時(shí),塔尖A在地面上的影子E與建筑物的距離EC為15米(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省鎮(zhèn)江市實(shí)驗(yàn)初中九年級(jí)(下)第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的一側(cè)有一建筑物,當(dāng)光線與水平面的夾角是30°時(shí),塔在建筑物的墻上留下了高為3米的影子CD;而當(dāng)光線與地面的夾角是45°時(shí),塔尖A在地面上的影子E與建筑物的距離EC為15米(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年天津市河北區(qū)九年級(jí)結(jié)課考試數(shù)學(xué)試卷(4月份)(解析版) 題型:解答題

如圖,某風(fēng)景區(qū)內(nèi)有一古塔AB,在塔的一側(cè)有一建筑物,當(dāng)光線與水平面的夾角是30°時(shí),塔在建筑物的墻上留下了高為3米的影子CD;而當(dāng)光線與地面的夾角是45°時(shí),塔尖A在地面上的影子E與建筑物的距離EC為15米(B、E、C在一條直線上),求塔AB的高度(結(jié)果保留根號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案