(2010•廈門)(1)計算:
(2)計算:[(x+3)2+(x+3)(x-3)]÷2x;
(3)解分式方程:
【答案】分析:(1)根據(jù)乘方、零指數(shù)冪進(jìn)行計算;(2)利用完全平方公式、平方差公式,以及多項式除以單項式的法則計算;(3)方程兩邊都乘以最簡公分母(x-1)(x-2),化為整式方程求解即可.
解答:解:(1)(-2)2-2÷+2010
=4-6+1
=-1;

(2)[(x+3)2+(x+3)(x-3)]÷2x,
=(x2+6x+9+x2-9)÷2x
=(2x2+6x)÷2x
=x+3;

(3)去分母得:3(x-2)=2(x-1)
化簡得:3x-6=2x-2
解得:x=4
經(jīng)檢驗,x=4是原方程的解,
∴原方程的解為x=4.
點(diǎn)評:本題主要考查整式的混合運(yùn)算和解方程的知識點(diǎn),解分式方程一定注意要驗根.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•廈門)某市為更有效地利用水資源,制定了居民用水收費(fèi)標(biāo)準(zhǔn):如果一戶每月用水量不超過15立方米,每立方米按1.8元收費(fèi);如果超過15立方米,超過部分按每立方米2.3元收費(fèi),其余仍按每立方米1.8元計算.另外,每立方米加收污水處理費(fèi)1元.若某戶一月份共支付水費(fèi)58.5元,則該戶一月份用水量是
20
20
立方米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2010•廈門)在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)P(m,-1)(m>0).連接OP,將線段OP繞點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到線段OM,且點(diǎn)M是拋物線y=ax2+bx+c的頂點(diǎn).
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(2,2),當(dāng)0≤x≤1時,求y的取值范圍;
(2)已知點(diǎn)A(1,0),若拋物線y=ax2+bx+c與y軸交于點(diǎn)B,直線AB與拋物線y=ax2+bx+c有且只有一個交點(diǎn),請判斷△BOM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2010•廈門)在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn)、已知等腰梯形OABC,OA∥BC,點(diǎn)A(4,0),BC=2,等腰梯形OABC的高是1,且點(diǎn)B、C都在第一象限.
(1)請畫出一個平面直角坐標(biāo)系,并在此坐標(biāo)系中畫出等腰梯形OABC;
(2)直線與線段AB交于點(diǎn)P(p,q),點(diǎn)M(m,n)在直線上,當(dāng)n>q時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廈門)在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)P(m,-1)(m>0).連接OP,將線段OP繞點(diǎn)O按逆時針方向旋轉(zhuǎn)90°得到線段OM,且點(diǎn)M是拋物線y=ax2+bx+c的頂點(diǎn).
(1)若m=1,拋物線y=ax2+bx+c經(jīng)過點(diǎn)(2,2),當(dāng)0≤x≤1時,求y的取值范圍;
(2)已知點(diǎn)A(1,0),若拋物線y=ax2+bx+c與y軸交于點(diǎn)B,直線AB與拋物線y=ax2+bx+c有且只有一個交點(diǎn),請判斷△BOM的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省廈門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•廈門)在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn)、已知等腰梯形OABC,OA∥BC,點(diǎn)A(4,0),BC=2,等腰梯形OABC的高是1,且點(diǎn)B、C都在第一象限.
(1)請畫出一個平面直角坐標(biāo)系,并在此坐標(biāo)系中畫出等腰梯形OABC;
(2)直線與線段AB交于點(diǎn)P(p,q),點(diǎn)M(m,n)在直線上,當(dāng)n>q時,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案