【題目】如圖,在中,,,,半徑為2的從點(diǎn)開(kāi)始(如圖①)沿直線向右滾動(dòng),滾動(dòng)時(shí)始終與直線相切(切點(diǎn)為),當(dāng)與只有一個(gè)公共點(diǎn)時(shí)滾動(dòng)停止.作于點(diǎn).
(1)圖①中,在邊上截得的弦長(zhǎng)______;
(2)當(dāng)圓心落在上時(shí),如圖②,判斷與的位置關(guān)系,請(qǐng)說(shuō)明理由;
(3)在滾動(dòng)過(guò)程中,線段的長(zhǎng)度隨之變化,設(shè),,求出與之間的函數(shù)關(guān)系式,并直接寫(xiě)出的取值范圍.
【答案】(1)2;(2)與相切,詳見(jiàn)解析;(3)
【解析】
(1)要求的長(zhǎng)度,需做輔助線構(gòu)造,由圓的半徑相等、與圓相切及特殊角,利用等量代換將所求線段轉(zhuǎn)化為已知線段求解;
(2)猜想與相切,但未知切點(diǎn),常用方法為作垂線,證半徑,結(jié)合直角三角形中角所對(duì)的邊等于斜邊的一半求解;
(3)線段之間的函數(shù)關(guān)系式,一般為一次函數(shù),分三種情況討論:點(diǎn)在左側(cè);點(diǎn)在上;點(diǎn)在右側(cè)三種情況,構(gòu)造直角三角形,利用三角函數(shù)及切線性質(zhì)求解.
解:(1)連接,,如解圖①,,,
∵,∴,∴為等邊三角形,∴.
圖①
(2)與相切;
理由如下:過(guò)點(diǎn)作于點(diǎn),連接,如解圖②,
圖②
∵與相切于點(diǎn),∴,
在中,,∴,
又∵,∴,在中,,
∴,在中,,
∴,即為的半徑,∴與相切;
(3)當(dāng)點(diǎn)在上時(shí),,;
當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),連接交于點(diǎn),如解圖③,
圖③
∵與相切于點(diǎn),∴,
又∵,∴,
在中,,
∴,∴,
∴在中,,
此時(shí)的取值范圍是:;
當(dāng)點(diǎn)在點(diǎn)的右側(cè)時(shí),連接并延長(zhǎng)交于點(diǎn),如解圖④,
圖④
同理可得:,∴,
∵,∴,
∵,∴,∴,
在中,
,
此時(shí)的取值范圍是:.
綜上,與之間的函數(shù)關(guān)系式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過(guò)點(diǎn)D作AC的平行線DE,交BA的延長(zhǎng)線于點(diǎn)E.
求證:
(1)△ABC≌△DCB;
(2)DE·DC=AE·BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)院醫(yī)生為了研究該院某種疾病的診斷情況,需要調(diào)查來(lái)院就診的病人的兩個(gè)生理指標(biāo),,于是他分別在這種疾病的患者和非患者中,各隨機(jī)選取20人作為調(diào)查對(duì)象,將收集到的數(shù)據(jù)整理后,繪制統(tǒng)計(jì)圖如下:
注“●”表示患者,“▲”表示非患者.
根據(jù)以上信息,回答下列問(wèn)題:
(1)在這40名被調(diào)查者中,
①指標(biāo)低于0.4的有 人;
②將20名患者的指標(biāo)的平均數(shù)記作,方差記作,20名非患者的指標(biāo)的平均數(shù)記作,方差記作,則 , (填“>”,“=”或“<”);
(2)來(lái)該院就診的500名未患這種疾病的人中,估計(jì)指標(biāo)低于0.3的大約有 人;
(3)若將“指標(biāo)低于0.3,且指標(biāo)低于0.8”作為判斷是否患有這種疾病的依據(jù),則發(fā)生漏判的概率多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校初三(1)班部分同學(xué)接受一次內(nèi)容為“最適合自己的考前減壓方式”的調(diào)查活動(dòng),收集整理數(shù)據(jù)后,老師將減壓方式分為五類,并繪制了圖1、圖2兩個(gè)不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題.
(1)初三(1)班接受調(diào)查的同學(xué)共有多少名;
(2)補(bǔ)全條形統(tǒng)計(jì)圖,并計(jì)算扇形統(tǒng)計(jì)圖中的“體育活動(dòng)C”所對(duì)應(yīng)的圓心角度數(shù);
(3)若喜歡“交流談心”的5名同學(xué)中有三名男生和兩名女生;老師想從5名同學(xué)中任選兩名同學(xué)進(jìn)行交流,直接寫(xiě)出選取的兩名同學(xué)都是女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某教研機(jī)構(gòu)為了了解初中生課外閱讀名著的現(xiàn)狀,隨機(jī)抽取了某校50名初中生進(jìn)行調(diào)查,依據(jù)相關(guān)數(shù)據(jù)繪制成了以下不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
類別 | 重視 | 一般 | 不重視 |
人數(shù) | a | 15 | b |
(1)求表格中a,b的值;
(2)請(qǐng)補(bǔ)全統(tǒng)計(jì)圖;
(3)若某校共有初中生2000名,請(qǐng)估計(jì)該校“重視課外閱讀名著”的初中生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某市有一塊長(zhǎng)為米,寬為米的長(zhǎng)方形地塊,規(guī)劃部門計(jì)劃將陰影部分進(jìn)行綠化,中間將修建一座雕像,左右兩邊修兩條寬為米的道路.().
(1)①試用含的代數(shù)式表示綠化的面積是多少平方米?
②假設(shè)陰影部分可以拼成一個(gè)矩形.請(qǐng)你求出所拼矩形相鄰兩邊的長(zhǎng):如果要使所拼矩形面積最大,求與滿足的關(guān)系式;
(2)若,請(qǐng)求出綠化面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于平面內(nèi)的點(diǎn)與射線,射線上與點(diǎn)距離最近的點(diǎn)與端點(diǎn)的距離叫做點(diǎn)關(guān)于射線的側(cè)邊距,記作.
(1)在菱形中,,.則__________,__________.
(2)在中,若,則是否必為正方形,請(qǐng)說(shuō)明理由;
(3)如圖,已知點(diǎn)是射線上一點(diǎn),,以為半徑畫(huà),點(diǎn)是上任意點(diǎn),為線段的中點(diǎn).
①若,則__________;
②設(shè),,求關(guān)于的函數(shù)關(guān)系式并寫(xiě)出自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,以為直徑作⊙,在⊙上一點(diǎn),.
(1)求證:是⊙的切線;
(2)過(guò)作分別與、和⊙交于點(diǎn)、、,若,.
①求⊙的半徑長(zhǎng);
②直接寫(xiě)出的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】六一前夕,某幼兒園園長(zhǎng)到廠家選購(gòu)A、B兩種品牌的兒童服裝,每套A品牌服裝進(jìn)價(jià)比B品牌服裝每套進(jìn)價(jià)多25元,用2000元購(gòu)進(jìn)A種服裝數(shù)量是用750元購(gòu)進(jìn)B種服裝數(shù)量的2倍.
求A、B兩種品牌服裝每套進(jìn)價(jià)分別為多少元?
該服裝A品牌每套售價(jià)為130元,B品牌每套售價(jià)為95元,服裝店老板決定,購(gòu)進(jìn)B品牌服裝的數(shù)量比購(gòu)進(jìn)A品牌服裝的數(shù)量的2倍還多4套,兩種服裝全部售出后,可使總的獲利超過(guò)1200元,則最少購(gòu)進(jìn)A品牌的服裝多少套?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com