(附加題)工人師傅有兩塊板材邊角料,其中一塊是邊長(zhǎng)60cm的正方形板材;另一塊是上底為30cm,下底為120cm,高為60cm的直角梯形板材(如下圖①).工人師傅想將這兩塊板材裁成兩塊全等的矩形板材,他將兩塊板材疊放在一起,使梯形的兩個(gè)直角頂點(diǎn)分別與正方形的兩個(gè)頂點(diǎn)重合,兩塊板材的重疊部分為五邊形ABCFE圍成的區(qū)域(如圖②).由于受材料紋理限制,要求裁出的矩形要以點(diǎn)B為一個(gè)頂點(diǎn).
(1)利用圖②,求FC的長(zhǎng);
(2)如圖③,若矩形的一個(gè)頂點(diǎn)P在線段EF上,P點(diǎn)到BG的距離為PN,試證明:
PN
NG
=
2
3

(3)利用圖③,求頂點(diǎn)B所對(duì)的頂點(diǎn)P到BC的距離PN為多少時(shí),矩形PMBN的面積最大?最大面積是多少?
(1)根據(jù)題意,ED=60-30=30cm,CG=120-60=60cm,
∵正方形的對(duì)邊平行,
∴ADBG,
DF
FC
=
ED
CG
,
DF
FC
=
30
60
=
1
2

又∵CD=60cm,
∴FC=
2
1+2
×60=40cm;

(2)證明:∵P點(diǎn)到BG的距離為PN,
∴PN⊥BC,
∵四邊形ABCD是正方形,
∴DC⊥BC,
∴△GCF△GPN,
PN
NG
=
FC
CG
,
PN
NG
=
40
60
=
2
3
;

(3)設(shè)BN為x,則NG=120-x,
根據(jù)(2)可得,PN=
2
3
NG=
2
3
(120-x),
∴矩形PMBN的面積=BN•PN=x•
2
3
(120-x)=-
2
3
(x2-120x)=-
2
3
(x-60)2+2400,
∴當(dāng)x=60時(shí),矩形PMBN的面積最大,
此時(shí)PN=
2
3
(120-x)=
2
3
(120-60)=40cm,
最大面積值是2400cm2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形ABCD中,ADBC,AB=AD=DC=2,∠C=60°,AE⊥BD于點(diǎn)E,F(xiàn)是CD的中點(diǎn),連接EF.
(1)求證:四邊形AEFD是平行四邊形;
(2)若點(diǎn)G是BC邊上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)G在什么位置時(shí),四邊形DEFG是矩形?并求出這個(gè)矩形的周長(zhǎng);
(3)在BC上能否找到另外一點(diǎn)G′,使四邊形DEG′F的周長(zhǎng)與(2)中矩形DEFG的周長(zhǎng)相等,請(qǐng)簡(jiǎn)述你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形中位線長(zhǎng)15cm,一個(gè)底角為60°,且一條對(duì)角線平分這個(gè)角,則這個(gè)等腰梯形周長(zhǎng)是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在梯形ABCD中,ADBC,中位線EF交BD于點(diǎn)O,若OE:OF=1:4,則AD:BC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,在梯形ABCD中,ADBC,對(duì)角線AC⊥BD,且AC=12,BD=5,則這個(gè)梯形中位線的長(zhǎng)等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在等腰梯形ABCD中,AC⊥BD,AC=6cm,則等腰梯形ABCD的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形的上、下底的長(zhǎng)分別為6厘米、12厘米,它的腰長(zhǎng)是5厘米,則它的面積是______平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

梯形的兩腰分別是4和6,上底為2,則下底x的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中,ADBC,中位線EF分別交BD、AC于點(diǎn)M、N.若AD=4cm,EF=6cm,則EM=______cm,F(xiàn)N=______cm,MN=______cm,BC=______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案