【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,CD=6,OA交BC于點(diǎn)E,則AE的長(zhǎng)度是_____.
【答案】3
【解析】
由已知可證∠BDA=30°;根據(jù)BD為⊙O的直徑,可證∠BCD=90°,然后利用等邊三角形和中位線性質(zhì)即可求.
∵△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,
∴∠CBA=∠BCA=30°.
∴∠BDA=∠ACB=30°.
∵BD為⊙O的直徑,
∴∠BCD=90°,∠BDA=30°,
∴∠BOA=2∠BDA =60°,
∴∠OBC=∠BOA-∠BCA=60°-30°=30°,
∵OB、OA為⊙O的半徑,
∴△OAB為等邊三角形,
∵∠OBC=∠CBA=30°
∴E是OA中點(diǎn),BC⊥OA,
∵∠BCD=90°,
∴OA∥CD,
∵∠BAC=120°,AB=AC, BC⊥OA,
∴E是BC中點(diǎn),
∵O是BD中點(diǎn)
∴,
∴AE=OE=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,BC⊥x軸,垂足為D,邊AB所在直線分別交x軸、y軸于點(diǎn)E、F,且AF=EF,反比例函數(shù)y=的圖象經(jīng)過(guò)A、C兩點(diǎn),已知點(diǎn)A(2,n).
(1)求AB所在直線對(duì)應(yīng)的函數(shù)表達(dá)式;(2)求點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車(chē)在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車(chē)由高速公路從甲地到乙地所需的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,鈍角△ABC中,AB=AC,BC=2,O是邊AB上一點(diǎn),以O為圓心,OB為半徑作⊙O,交邊AB于點(diǎn)D,交邊BC于點(diǎn)E,過(guò)E作⊙O的切線交邊AC于點(diǎn)F.
(1)求證:EF⊥AC.
(2)連結(jié)DF,若∠ABC=30°,且DF∥BC,求⊙O的半徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是一塊綠化帶,將陰影部分修建為花圃,已知AB=13,AC=5,BC=12,陰影部分是△ABC的內(nèi)切圓,一只自由飛翔的小鳥(niǎo)將隨機(jī)落在這塊綠化帶上,則小鳥(niǎo)落在花圃上的概率為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的布袋中裝有三個(gè)小球,小球上分別標(biāo)有數(shù)字-2、l、2,它們除了數(shù)字不同外,其它都完全相同.
(1)隨機(jī)地從布袋中摸出一個(gè)小球,則摸出的球?yàn)闃?biāo)有數(shù)字l的小球的概率為 .
(2)小紅先從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,再把此球放回袋中攪勻,由小亮從布袋中隨機(jī)摸出一個(gè)小球,記下數(shù)字作為的值,請(qǐng)用樹(shù)狀圖或表格列出、的所有可能的值,并求出直線不經(jīng)過(guò)第四象限的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A、B、C、D、E是⊙O上五點(diǎn),⊙O的直徑BE=2,∠BCD=120°,A為的中點(diǎn),延長(zhǎng)BA到點(diǎn)P,使BA=AP,連接PE.
(1)求線段BD的長(zhǎng);
(2)求證:直線PE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,,點(diǎn)為中點(diǎn),點(diǎn)為線段上一個(gè)動(dòng)點(diǎn),連接,將沿折疊得到,連接,,當(dāng)為直角三角形時(shí),的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:已知正方形的邊長(zhǎng)為a,將此正方形按照下面的方法進(jìn)行剪拼:第一次,先沿正方形的對(duì)邊中點(diǎn)連線剪開(kāi),然后對(duì)接為一個(gè)長(zhǎng)方形,則此長(zhǎng)方形的周長(zhǎng)為___;第二次,再沿長(zhǎng)方形的對(duì)邊(長(zhǎng)方形的寬)中點(diǎn)連線剪開(kāi),對(duì)接為新的長(zhǎng)方形,如此繼續(xù)下去,第n次得到的長(zhǎng)方形的周長(zhǎng)為__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com