【題目】如圖,在中,,AD是BC邊上的中線,點(diǎn)E為AD的中點(diǎn),過點(diǎn)A作交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:;
(2)連接DF,當(dāng) 度時(shí),四邊形ABDF為菱形?證明你的結(jié)論.
【答案】(1)見解析;(2)30
【解析】
(1)根據(jù)直角三角形的性質(zhì)得到AD=CD=BD,然后證明△AEF≌△DEB即可得到結(jié)論;
(2)由條件可知四邊形ABDF是平行四邊形,然后通過30°所對(duì)的直角邊為斜邊的一半,得到AB=BD,于是得到結(jié)論.
(1)證明:∵∠BAC=90°,AD是BC邊上的中線,
∵AD=CD=BD=BC,
∵點(diǎn)E為AD的中點(diǎn),
∴AE=DE,
∵AF∥BC,
∴∠AFE=∠DBE,
∵∠AEF=∠DEB,
∴△AEF≌△DEB(AAS),
∴AF=BD,
∴AD=AF;
(2)30°;
由(1)可知AF=BD,
∵AF∥BC,
∴四邊形ABDF是平行四邊形,
∵∠BAC=90°,∠ACB=30°,
∴AB=BC =BD,
∴平行四邊形ABDF為菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶具店購進(jìn)了A、B兩種不同的茶具,1套A種茶具和2套B種茶具共需250元;3套A種茶具和4套B種茶具共需600元.
(1)求A、B兩種茶具每套的進(jìn)價(jià)分別是多少元?
(2)由于茶具暢銷,茶具店準(zhǔn)備再購進(jìn)A、B兩種茶具共80套,但這次進(jìn)貨時(shí),工廠對(duì)A種茶具每套進(jìn)價(jià)提高了8%,而B種茶具每套按第一次進(jìn)價(jià)的八折,若茶具店本次進(jìn)貨總錢數(shù)不超過6240元,則最多可進(jìn)A種茶具幾套?
(3)若銷售一套A種茶具可獲利30元,銷售一套B種茶其可獲利20元,在(2)的條件下,如何進(jìn)貨可使本次購進(jìn)茶具獲利最多?最多是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某測(cè)繪公司借助大型無人飛機(jī)航拍測(cè)繪.如圖,無人飛機(jī)從C處放飛迅速爬升到點(diǎn)A處,繼續(xù)水平飛行400米到達(dá)B處共需150秒,在地面C處同一方向上分別測(cè)得A處的仰角為75°,B處的仰角為30°.己知無人飛機(jī)的水平飛行速度為4米/秒,求這架無人飛機(jī)從C到A的爬升速度及水平飛行高度.(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在矩形ABCD中,AB<AD,對(duì)角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P由點(diǎn)A出發(fā),沿AB-BC→CD向點(diǎn)D運(yùn)動(dòng)設(shè)點(diǎn)P的運(yùn)動(dòng)路程為x,△AOP的面積為y,y與x的函數(shù)關(guān)系圖象如圖②所小示,則AD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,,平分,與對(duì)角線相交于點(diǎn),是線段的中點(diǎn),則下列結(jié)論中:①;②;③;④,正確的有( )個(gè)
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知的頂點(diǎn),,點(diǎn)在軸的正半軸上,在軸的正半軸上.連接,過點(diǎn)作,垂足為點(diǎn),交于點(diǎn),則點(diǎn)的坐標(biāo)為( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,過上到點(diǎn)的距離為1,3,5,7,…的點(diǎn)作的垂線,分別與相交,得到圖所示的陰影梯形,它們的面積依次記為,,….則(1)_______________;(2)通過計(jì)算可得______________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年疫情防控期間,我市一家服裝有限公司生產(chǎn)了一款服裝,為對(duì)比分析以前實(shí)體商店和現(xiàn)在網(wǎng)上商店兩種途徑的銷售情況,進(jìn)行了為期30天的跟蹤調(diào)查.其中實(shí)體商店的日銷售量(百件)與時(shí)間(為整數(shù),單位:天)的部分對(duì)應(yīng)值如下表所示;網(wǎng)上商店的日銷售量(百件)與時(shí)間(為整數(shù),單位:天)的關(guān)系如圖所示.
時(shí)間(天) | 0 | 6 | 10 | 12 | 18 | 20 | 24 | 30 |
日銷售量(百件) | 0 | 72 | 100 | 108 | 108 | 100 | 72 | 0 |
(1)請(qǐng)你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)反映與的變化規(guī)律,并求出與的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在跟蹤調(diào)查的30天中,設(shè)實(shí)體商店和網(wǎng)上商店的日銷售總量為(百件),求與的函數(shù)關(guān)系式;當(dāng)為何值時(shí),日銷售量達(dá)到最大,并求出此時(shí)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】年初,一場(chǎng)突如其來的冠狀肺炎肆虐全國(guó),學(xué)生經(jīng)歷了“停課不停學(xué)”,疫情逐漸消退.某校在開學(xué)前夕,準(zhǔn)備買一批酒精和消毒液對(duì)校園進(jìn)行消毒,經(jīng)調(diào)查,若購買箱酒精和箱消毒液共需元,購買箱酒精和箱消毒液共需元.
(1)求酒精和消毒液的單價(jià);
(2)根據(jù)學(xué)校實(shí)際情況,需從該商店一次性購買酒精和消毒液共箱,總費(fèi)用不超過元,那么最多可以購買多少箱消毒液?
(3)由于分階段開學(xué),九年級(jí)學(xué)生第一批開學(xué),年級(jí)組長(zhǎng)張老師準(zhǔn)備用元購買一批酒精和消毒液進(jìn)行先期消毒,在錢剛好用完的條件下,他有哪幾種購買方案?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com