如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),連心線O1O2交⊙O1于C、D兩點(diǎn),直線CA交⊙O2于點(diǎn)P,直線PD交⊙O1于點(diǎn)Q,且CP∥QB,求證:AC=AP.

證明:連接AD,AB,
∵⊙O1與⊙O2相交于A、B兩點(diǎn),
∴O1O2⊥AB,=,
∴∠C=∠Q,
∵CP∥QB,
∴∠Q=∠P,
∴∠P=∠C,
∴CD=PD,
∵CD是⊙O1的直徑,
∴∠CAD=90°,
即DA⊥PC,
∴AC=AP.
分析:連接AD,AB,先根據(jù)相交兩圓的連心線垂直平分兩圓的公共弦,得出O1O2⊥AB,由垂徑定理得出弧AD=弧BD,由圓周角定理得出∠ACD=∠BCD,則∠BQD=∠ACD;又CP∥QB,根據(jù)平行線的性質(zhì)得出∠BQD=∠APD,則∠APD=∠ACD,由等腰三角形的判定即可證明出AC=AP.
點(diǎn)評(píng):本題綜合考查了相交兩圓的性質(zhì),圓周角定理,平行線的判定,等腰三角形的判定等知識(shí),綜合性較強(qiáng),有一定難度,正確作出輔助線是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),連心線O1O2交⊙O1于C、D兩點(diǎn),直線CA交⊙O2于點(diǎn)P,直線PD交⊙O1于點(diǎn)Q,且CP∥QB,求證:AC=AP.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O1與⊙O2是等圓,直線CF順次交兩圓于C、D、E、F,且CF交O1O2于點(diǎn)M.需要添加上一個(gè)條件,(只填寫一個(gè)條件,不添加輔精英家教網(wǎng)助線或另添字母),則M是線段O1O2的中點(diǎn),并說(shuō)明理由.(說(shuō)明理由時(shí)可添加輔助線或字母)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過(guò)A作⊙O1的切線交⊙O2于E,連接EB并延長(zhǎng)交⊙O1于C,直線CA交⊙O2于點(diǎn)D.
(1)當(dāng)A、D不重合時(shí),求證:AE=DE
(2)當(dāng)D與A重合時(shí),且BC=2,CE=8,求⊙O1的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知⊙O1與⊙O2相交于點(diǎn)A、B,AB=8,O1O2=1,⊙O1的半徑長(zhǎng)為5,那么⊙O2的半徑長(zhǎng)為
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知⊙O1與⊙O2的半徑分別為r1,r2,⊙O2經(jīng)過(guò)⊙O1的圓心O1,且兩圓相交于A,B兩點(diǎn),C為⊙O2上的點(diǎn),連接AC交⊙O1于D點(diǎn),再連接BC,BD,AO1,AO2,O1O2,有如下四個(gè)結(jié)論:①∠BDC=∠AO1O2;②
BD
BC
=
r1
r2
;③AD=DC; ④BC=DC.其中正確結(jié)論的序號(hào)為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案