請寫出定理:“等腰三角形的兩條腰相等”的逆定理為:      

 

【答案】

兩邊相等的三角形是等腰三角形 

【解析】互逆定理即命題的提設與結論互換。本題題設是“等腰三角形”結論是“兩邊相等”。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•漳州)(1)問題探究
數(shù)學課上,李老師給出以下命題,要求加以證明.
如圖1,在△ABC中,M為BC的中點,且MA=
12
BC,求證∠BAC=90°.
同學們經(jīng)過思考、討論、交流,得到以下證明思路:
思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…
思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…
思路三 以BC為直徑作圓,利用圓的知識…
思路四…
請選擇一種方法寫出完整的證明過程;
(2)結論應用
李老師要求同學們很好地理解(1)中命題的條件和結論,并直接運用(1)命題的結論完成以下兩道題:
①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙0的切線;
②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年初中畢業(yè)升學考試(福建漳州卷)數(shù)學(解析版) 題型:解答題

(1)問題探究

數(shù)學課上,李老師給出以下命題,要求加以證明.

如圖1,在△ABC中,M為BC的中點,且MA=BC,求證∠BAC=90°.

同學們經(jīng)過思考、討論、交流,得到以下證明思路:

思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…

思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…

思路三 以BC為直徑作圓,利用圓的知識…

思路四…

請選擇一種方法寫出完整的證明過程;

(2)結論應用

李老師要求同學們很好地理解(1)中命題的條件和結論,并直接運用(1)命題的結論完成以下兩道題:

①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙O的切線;

②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

 

 

查看答案和解析>>

科目:初中數(shù)學 來源:2013年福建省漳州市中考數(shù)學試卷 (解析版) 題型:解答題

(1)問題探究
數(shù)學課上,李老師給出以下命題,要求加以證明.
如圖1,在△ABC中,M為BC的中點,且MA=BC,求證∠BAC=90°.
同學們經(jīng)過思考、討論、交流,得到以下證明思路:
思路一 直接利用等腰三角形性質(zhì)和三角形內(nèi)角和定理…
思路二 延長AM到D使DM=MA,連接DB,DC,利用矩形的知識…
思路三 以BC為直徑作圓,利用圓的知識…
思路四…
請選擇一種方法寫出完整的證明過程;
(2)結論應用
李老師要求同學們很好地理解(1)中命題的條件和結論,并直接運用(1)命題的結論完成以下兩道題:
①如圖2,線段AB經(jīng)過圓心O,交⊙O于點A,C,點D在⊙O上,且∠DAB=30°,OA=a,OB=2a,求證:直線BD是⊙0的切線;
②如圖3,△ABC中,M為BC的中點,BD⊥AC于D,E在AB邊上,且EM=DM,連接DE,CE,如果∠A=60°,請求出△ADE與△ABC面積的比值.

查看答案和解析>>

同步練習冊答案