如圖,在平面內(nèi),兩條直線l1,l2相交于點(diǎn)O,對于平面內(nèi)任意一點(diǎn)M,若p,q分別是點(diǎn)M到直線l1,l2的距離,則稱(p,q)為點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)”是(2,1)的點(diǎn)共有( )個(gè).

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】分析:到l1距離為2的直線有2條,到l2距離為1的直線有2條,這4條直線有4個(gè)交點(diǎn),這4個(gè)交點(diǎn)就是“距離坐標(biāo)”是(2,1)的點(diǎn).
解答:解:因?yàn)閮蓷l直線相交有四個(gè)角,因此每一個(gè)角內(nèi)就有一個(gè)到直線l1,l2的距離分別是2,1的點(diǎn),即距離坐標(biāo)是(2,1)的點(diǎn),因而共有4個(gè).
故選D.
點(diǎn)評:本題用到的知識點(diǎn)為:到一條已知直線距離為定值的直線有兩條.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,在平面內(nèi),兩條直線l1,l2相交于點(diǎn)O,對于平面內(nèi)任意一點(diǎn)M,若p,q分別是點(diǎn)M到直線l1,l2的距離,則稱(p,q)為點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)”是(2,1)的點(diǎn)共有
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,在平面內(nèi),兩條直線l1,l2相交于點(diǎn)O,對于平面內(nèi)任意一點(diǎn)M,若p,q分別是點(diǎn)M到直線l1,l2的距離,則稱(p,q)為點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)”是(2,1)的點(diǎn)共有( 。﹤(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面內(nèi),兩條直線l1,l2相交于點(diǎn)O,對于平面內(nèi)任意一點(diǎn)M,若p、q分別是點(diǎn)M到直線l1,l2的距離,則稱(p,q)為點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)”是(1,1)的點(diǎn)共有
4
4
個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆上海市松江區(qū)九年級下學(xué)期3月月考數(shù)學(xué)試卷(帶解析) 題型:填空題

如圖,在平面內(nèi),兩條直線l1,l2相交于點(diǎn)O,對于平面內(nèi)任意一點(diǎn)M,若p,q分別是點(diǎn)M到直線l1,l2,的距離,則稱(p,q)為點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)”是(3,2)的點(diǎn)共有             個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在平面內(nèi),兩條直線l1,l2相交于點(diǎn)O,對于平面內(nèi)任意一點(diǎn)M,若p,q分別是點(diǎn)M到直線l1,l2的距離,則稱(p,q)為點(diǎn)M的“距離坐標(biāo)”.根據(jù)上述規(guī)定,“距離坐標(biāo)”是(2,1)的點(diǎn)共有(  )個(gè).
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案