在Rt△ABC中,∠C=90°,D是BC邊上一點,且BD=AD=10,∠ADC=60°,求△ABC的面積.

【答案】分析:根據(jù)已知可得∠CAD為30°,根據(jù)直角三角形中30度角所對的邊是斜邊的一半可求得DC,AC的長,從而可得到BC的長,最后利用三角形的面積公式求解即可.
解答:解:∵∠C=90°,∠ADC=60°,
∴∠CAD=30°,
∵BD=AD=10,
∴DC=5,AC=5
∴BC=BD+CD=15,
∴△ABC的面積=×5×15=
點評:此題主要考查含30度角的直角三角形的性質(zhì):在直角三角形中,30°角所對的直角邊等于斜邊的一半.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點,以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點D是AB的中點,點O是△ABC的重心,則OD的長為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案