精英家教網 > 初中數學 > 題目詳情
在平面直角坐標系內,O為坐標原點,點C坐標為(0,
3
),E點坐標為(1,0),將△COE沿直線CE折疊,點O落在點D處.
(1)求直線CE的解析式;
(2)求點D的坐標;
(3)以CE為底邊,且底角為30°的等腰三角形有幾個?請寫出這些等腰三角形頂點的坐標.
(1)設直線CE的解析式為y=kx+b(k≠0).
∵點C坐標為(0,
3
),E點坐標為(1,0),
3
=b
0=k+b
,
解得k=-
3
,b=
3
,即直線CE的解析式為y=-
3
x+
3
;

(2)Rt△COE中,OE=1、OC=
3
,
∴∠OCE=30°,則∠OCD=60°;
又CO=CD,
∴△OCD是等邊三角形,作高DF⊥y軸垂足F,則OF=
1
2
OC=
3
2
,DF=
3
OF=
3
2
,
則點D坐標(
3
2
,
3
2
);

(3)以CE為底邊且底角30°的等腰三角形有兩個:①△JCE,點J(1,
2
3
3
);②△KCE,點K(0,
3
3
).
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

某班師生組織植樹活動,上午8時從學校出發(fā),到植樹地點后原路返校,如圖為師生離校路程s與時間t之間的圖象.請回答下列問題:

(1)問師生何時回到學校?
(2)如果運送工具的三輪車比師生遲半小時出發(fā),與師生同路勻速前進,早半個小時到達植樹地點,請在圖中,畫出該三輪車離校路程s與時間t之間的圖象,并結合圖象直接寫出三輪車追上師生時離學校的路程;
(3)如果師生騎自行車上午8時出發(fā),到植樹地點后,植樹需2小時,要求13時至14時之間返回學校,往返平均速度分別為每小時8km、6km.試通過計算說明植樹點選在距離學校多遠較為合適.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

一次函數圖象如圖所示,則函數關系式是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某種化肥在縣城里的甲、乙兩個生產資料門市部均有銷售,現了解到該種化肥在甲、乙兩個門市部的標價均為600元/噸,但都有一定的優(yōu)惠政策,甲門市部是第一噸按標價收費,超出部分每噸優(yōu)惠25%;乙門市部每噸優(yōu)惠20%出售.
(1)寫出甲門市部每次交易的銷售額y1(元)與銷量x(噸)之間的函數關系式及乙門市部每次交易的銷售額y2(元)與銷量x(噸)之間的函數關系式;
(2)種糧大戶張某想一次購買此種化肥4噸,李某想一次購買此種化肥8噸,他們到哪個門市部購買省錢,請給他們分別提出合理建議.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知正方形的面積為9x2+36xy+36y2(x>0,y>0),且這個正方形的邊長為12.
(1)求x的取值范圍;
(2)若x≥2,求y的最大值;
(3)若x+y≤3,求x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

課間休息時,同學們到飲水機旁依次每人接水0.25升,他們先打開了一個飲水管,后來又打開了第二個飲水管.假設接水的過程中每根飲水管出水的速度是勻速的,在不關閉飲水管的情況下,飲水機水桶內的存水量y(升)與接水時間x(分)的函數關系圖象如圖所示.請結合圖象回答下列問題:
(1)存水量y(升)與接水時間x(分)的函數關系式;
(2)如果接水的同學有28名,那么他們都接完水需要幾分鐘?
(3)如果有若干名同學按上述方法接水,他們接水所用時間要比只開第一個飲水管接水的時間少用2分鐘,那么有多少名學生接完水?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,把含有30°角的三角板ABO置入平面直角坐標系中,A,B兩點坐標分別為(3,0)和(0,3
3
).動點P從A點開始沿折線AO-OB-BA運動,點P在AO,OB,BA上運動,速度分別為1,
3
,2(長度單位/秒).一直尺的上邊緣l從x軸的位置開始以
3
3
(長度單位/秒)的速度向上平行移動(即移動過程中保持lx軸),且分別與OB,AB交于E,F兩點﹒設動點P與動直線l同時出發(fā),運動時間為t秒,當點P沿折線AO-OB-BA運動一周時,直線l和動點P同時停止運動.
請解答下列問題:
(1)過A,B兩點的直線解析式是______;
(2)當t﹦4時,點P的坐標為______;當t﹦______,點P與點E重合;
(3)①作點P關于直線EF的對稱點P′.在運動過程中,若形成的四邊形PEP′F為菱形,則t的值是多少?
②當t﹦2時,是否存在著點Q,使得△FEQ△BEP?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,A、B兩地相距200km,一列火車從B地出發(fā)沿BC方向以120km/h的速度行駛,在行駛過程中,這列火車離A地的路程y(km)與行駛時間t(h)之間的函數關系式是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

為了迎接“十•一”小長假的購物高峰.某運動品牌專賣店準備購進甲、乙兩種運動鞋.其中甲、乙兩種運動鞋的進價和售價如下表:
運動鞋
價格
進價(元/雙)mm-20
售價(元/雙)240160
已知:用3000元購進甲種運動鞋的數量與用2400元購進乙種運動鞋的數量相同.
(1)求m的值;
(2)要使購進的甲、乙兩種運動鞋共200雙的總利潤(利潤=售價-進價)不少于21700元,且不超過22300元,問該專賣店有幾種進貨方案?
(3)在(2)的條件下,專賣店準備對甲種運動鞋進行優(yōu)惠促銷活動,決定對甲種運動鞋每雙優(yōu)惠a(50<a<70)元出售,乙種運動鞋價格不變.那么該專賣店要獲得最大利潤應如何進貨?

查看答案和解析>>

同步練習冊答案