已知:點(diǎn)P為正方形ABCD內(nèi)部一點(diǎn),且∠BPC=90°,過點(diǎn)P的直線分別交邊AB、邊CD于點(diǎn)E、點(diǎn)F.
(1)如圖1,當(dāng)PC=PB時,則SPBE、SPCF SBPC之間的數(shù)量關(guān)系為 _________ ;
(2)如圖2,當(dāng)PC=2PB時,求證:16SPBE+SPCF=4SBPG;
(3)在(2)的條件下,Q為AD邊上一點(diǎn),且∠PQF=90°,連接BD,BD交QF于點(diǎn)N,若Sbpc=80,BE=6.求線段DN的長.

(1)SPBE+SPCF=SBPC;     (2)見解析    (3)DN=2或3

解析試題分析:(1)如圖1所示:過點(diǎn)P作PI⊥BC于點(diǎn)I,
∵PB=PC,
∴PI∥BE∥CF,
∴PI是梯形BCFE的中位線,
∴PI=(BE+CF),
∵△PBC是等腰直角三角形,
∴PI=AB=CI,
∴SPBE+SPCF=BE•BI+CF•CI=BE×BC+CF•BC=BC(BE+CF)=BC•PI=SPBC;
故答案為:SPBE+SPCF=SBPC;
(2)如圖2,過點(diǎn)P作PG⊥EF交BC于點(diǎn)G,∠EPG=90°,
∵∠BPC=90°,
∴∠EPB+∠BPG=90°,
∵∠BPG+∠CPG=90°,
∴∠EPB=∠CPG,
同理,∵∠EBP+∠PBC=90°,∠PBC+∠BCP=90°,
∴∠EBP=∠BCP,
∴△EPB∽△GPC,
∵PC=2PB,
=(2=
∴SGPC=4SEPB
同理可得SFPC=4SGPB,
∵SPBG+SPGC=SBPC,
∴16SPBE+SPFC=4SBPC;
(3)如圖3,設(shè)正方形的邊長為a(a>0),
∵∠BPC=90°,PC=2PB,SBPC=80,
=80,解得a=20,
由(2)知,△EPB∽△GPC,
∴CG=2BE=12,
∴BG=8,
∴CF=16,DF=4,
過點(diǎn)P作PM∥AB交BC于點(diǎn)M.交AD于點(diǎn)H,過點(diǎn)P作PT⊥CD于T,
∵PM⊥BC,BC=20,SBPC=80,
∴PM=8,
∴PH=12,PT=16,F(xiàn)T=8,
∵∠PQF=90°,
∴由勾股定理得,(HQ2+HP2)+(DQ2+DF2)=PT2+TF2,即(16﹣DQ)2+122+(DQ2+42)=162+82,解得DQ=4或DQ=12,
當(dāng)DQ=4時,
∵DQ=DF=4,∠PQF=90°,DN為∠QDF的角平分線,
∴DN=QD=2;
當(dāng)DQ=12時,過點(diǎn)N作NN1⊥QD于N1,
∵∠QOF=90°,DN為∠QDF的角平分線,
∴∠QDN=45°,
∵NN1⊥AD,
∴NN1=N1D,△QDF∽△QN1N,
=,=,解得NN1=3,
∴DN===3
綜上所述,DN=2或3

考點(diǎn):相似形綜合題;勾股定理;正方形的性質(zhì);相似三角形的判定與性質(zhì).
點(diǎn)評:本題考查的是相似形的綜合題,涉及到相似三角形的判定與性質(zhì)、正方形的性質(zhì)、等腰三角形的性質(zhì)及勾股定理,解答此題的關(guān)鍵是作出輔助線,構(gòu)造出相似三角形,再利用相似三角形的性質(zhì)進(jìn)行解答.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•道外區(qū)一模)已知:點(diǎn)P為正方形ABCD內(nèi)部一點(diǎn),且∠BPC=90°,過點(diǎn)P的直線分別交邊AB、邊CD于點(diǎn)E、點(diǎn)F.
(1)如圖1,當(dāng)PC=PB時,則S△PBE、S△PCF S△BPC之間的數(shù)量關(guān)系為
S△PBE+S△PCF=S△BPC
S△PBE+S△PCF=S△BPC

(2)如圖2,當(dāng)PC=2PB時,求證:16S△PBE+S△PCF=4S△BPG
(3)在(2)的條件下,Q為AD邊上一點(diǎn),且∠PQF=90°,連接BD,BD交QF于點(diǎn)N,若S△bpc=80,BE=6.求線段DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-相似的判定解答題(解析版) 題型:解答題

已知:點(diǎn)P為正方形ABCD內(nèi)部一點(diǎn),且∠BPC=90°,過點(diǎn)P的直線分別交邊AB、邊CD于點(diǎn)E、點(diǎn)F.

(1)如圖1,當(dāng)PC=PB時,則S△PBE、S△PCF S△BPC之間的數(shù)量關(guān)系為 _________ 

(2)如圖2,當(dāng)PC=2PB時,求證:16S△PBE+S△PCF=4S△BPG;

(3)在(2)的條件下,Q為AD邊上一點(diǎn),且∠PQF=90°,連接BD,BD交QF于點(diǎn)N,若S△bpc=80,BE=6.求線段DN的長.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:點(diǎn)P為正方形ABCD內(nèi)部一點(diǎn),且∠BPC=90°,過點(diǎn)P的直線分別交邊AB、邊CD于點(diǎn)E、點(diǎn)F.
(1)如圖1,當(dāng)PC=PB時,則S△PBE、S△PCF S△BPC之間的數(shù)量關(guān)系為______;
(2)如圖2,當(dāng)PC=2PB時,求證:16S△PBE+S△PCF=4S△BPG;
(3)在(2)的條件下,Q為AD邊上一點(diǎn),且∠PQF=90°,連接BD,BD交QF于點(diǎn)N,若S△bpc=80,BE=6.求線段DN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年黑龍江省哈爾濱市道外區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

已知:點(diǎn)P為正方形ABCD內(nèi)部一點(diǎn),且∠BPC=90°,過點(diǎn)P的直線分別交邊AB、邊CD于點(diǎn)E、點(diǎn)F.
(1)如圖1,當(dāng)PC=PB時,則S△PBE、S△PCF S△BPC之間的數(shù)量關(guān)系為______;
(2)如圖2,當(dāng)PC=2PB時,求證:16S△PBE+S△PCF=4S△BPG;
(3)在(2)的條件下,Q為AD邊上一點(diǎn),且∠PQF=90°,連接BD,BD交QF于點(diǎn)N,若S△bpc=80,BE=6.求線段DN的長.

查看答案和解析>>

同步練習(xí)冊答案