【題目】在△ABC與△A′B′C′中,有下列條件:(1) ,(2) ;(3)∠A=∠A′;(4)∠C=∠C′,如果從中任取兩個(gè)條件組成一組,那么能判斷△ABC∽△A′B′C′的共有(
A.1組
B.2組
C.3組
D.4組

【答案】C
【解析】解:共有3組,其組合分別是(1)和(2)三邊對(duì)應(yīng)成比例的兩個(gè)三角形相似;(2)和(4)兩邊對(duì)應(yīng)成比例且夾角相等的兩個(gè)三角形相似;(3)和(4)兩角對(duì)應(yīng)相等的兩個(gè)三角形相似. 故選C.
【考點(diǎn)精析】本題主要考查了相似三角形的判定的相關(guān)知識(shí)點(diǎn),需要掌握相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,BC為⊙O切線,連接A、C兩點(diǎn),交⊙O于點(diǎn)D,BE=CE,連接DE,OE.
(1)判斷DE與⊙O的位置關(guān)系,并說明理由;
(2)求證:BC2=CD2OE;
(3)若cos∠BAD= ,BE=6,求OE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小米是一個(gè)愛動(dòng)腦筋的孩子,他用如下方法作∠AOB的角平分線: 作法:如圖,

⑴在射線OA上任取一點(diǎn)C,過點(diǎn)C作CD∥OB;
⑵以點(diǎn)C為圓心,CO的長(zhǎng)為半徑作弧,交CD于點(diǎn)E;
⑶作射線OE.
所以射線OE就是∠AOB的角平分線.請(qǐng)回答:小米的作圖依據(jù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)市委和市政府綠色環(huán)保,節(jié)能減排的號(hào)召,幸福商場(chǎng)用3300元購(gòu)進(jìn)甲、乙兩種節(jié)能燈共計(jì)100只,很快售完.這兩種節(jié)能燈的進(jìn)價(jià)、售價(jià)如下表:

進(jìn)價(jià)(元/只)

售價(jià)(元/只)

甲種節(jié)能燈

30

40

甲種節(jié)能燈

35

50

(1)求幸福商場(chǎng)甲、乙兩種節(jié)能燈各購(gòu)進(jìn)了多少只?

(2)全部售完100只節(jié)能燈后,商場(chǎng)共計(jì)獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)第一次用10000元購(gòu)進(jìn)甲、乙兩種商品,銷售完成后共獲利2200元,其中甲種商品每件進(jìn)價(jià)60元,售價(jià)70元;乙種商品每件進(jìn)價(jià)50元,售價(jià)65元.

(1)求該商場(chǎng)購(gòu)進(jìn)甲、乙兩種商品各多少件?

(2)商場(chǎng)第二次以原進(jìn)價(jià)購(gòu)進(jìn)甲、乙兩種商品,且購(gòu)進(jìn)甲、乙商品的數(shù)量分別與第一次相同,甲種商品按原售價(jià)出售,而乙種商品降價(jià)銷售,要使第二次購(gòu)進(jìn)的兩種商品全部售出后,獲利不少于1800元,乙種商品最多可以降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,過點(diǎn)(x1 , 0),﹣3<x1<﹣2,對(duì)稱軸為直線x=﹣1.給出四個(gè)結(jié)論:①abc>0;②2a+b=0;③b2>4ac;④3b+2c>0,其中正確的結(jié)論有(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC 中,BC=6cm.射線 AGBC,點(diǎn) E 從點(diǎn) A 出發(fā)沿射線 AG 2cm/s 的速度運(yùn)動(dòng),當(dāng)點(diǎn) E 先出發(fā) 1s 后,點(diǎn) F 也從點(diǎn) B 出發(fā)沿射線 BC cm/s 的速度運(yùn)動(dòng)分別連結(jié) AF,CE.設(shè)點(diǎn) F 運(yùn)動(dòng)時(shí)間為 t(s),其中 t>0.

(1)當(dāng) t 為何值時(shí),∠BAF<BAC;

(2)當(dāng) t 為何值時(shí),AE=CF;

(3)當(dāng) t 為何值時(shí),SABF+SACE<SABC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+c的頂點(diǎn)為D(﹣1,2),其部分圖象如圖所示,給出下列四個(gè)結(jié)論: ①a<0; ②b2﹣4ac>0;③2a﹣b=0;④若點(diǎn)P(x0 , y0)在拋物線上,則ax02+bx0+c≤a﹣b+c.其中結(jié)論正確的是(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知BD垂直平分AC,∠BCD=∠ADFAF⊥AC,

1)證明四邊形ABDF是平行四邊形;

2)若AF=DF=5,AD=6,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案