已知,二次函數(shù)的表達式為y=4x2+8x.寫出這個函數(shù)圖象的對稱軸和頂點坐標,并求圖象與x軸的交點的坐標.
【答案】分析:解決本題的關(guān)鍵是搞清a、b、c的值,記住二次函數(shù)對稱軸及頂點坐標公式,圖象與x軸的交點的橫坐標為此函數(shù)值為0時的一元二次方程的解.
解答:解:在y=4x2+8x中,
∵a=4,b=8,c=0,
,
∴這個函數(shù)圖象的對稱軸是:直線x=-1,頂點坐標是:(-1,-4),
當y=0,則4x2+8x=0,
解得x1=0,x2=-2,
∴函數(shù)圖象與x軸的交點的坐標為(0,0),(-2,0).
點評:本題考查了由拋物線的一般式轉(zhuǎn)化為頂點式,交點式的常用方法,在拋物線解析式系數(shù)簡單的情況下,也可以直接用配方法求頂點坐標.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2011•自貢)已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少
1
a
,縱坐標增大
1
a
分別作為點A的橫、縱坐標;把頂點的橫坐標增加
1
a
,縱坐標增加
1
a
分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源:四川省自貢市2011年初中畢業(yè)生學業(yè)考試數(shù)學試卷 題型:044

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.

(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;

(2)請找出在直線上但不是該拋物線頂點的所有點,并說明理由;

(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+x(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少數(shù)學公式,縱坐標增大數(shù)學公式分別作為點A的橫、縱坐標;把頂點的橫坐標增加數(shù)學公式,縱坐標增加數(shù)學公式分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

科目:初中數(shù)學 來源:四川省中考真題 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上。
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明。

查看答案和解析>>

科目:初中數(shù)學 來源:2011年四川省自貢市中考數(shù)學試卷(解析版) 題型:解答題

已知拋物線y=ax2+2x+3(a≠0)有如下兩個特點:①無論實數(shù)a怎樣變化,其頂點都在某一條直線l上;②若把頂點的橫坐標減少,縱坐標增大分別作為點A的橫、縱坐標;把頂點的橫坐標增加,縱坐標增加分別作為點B的橫、縱坐標,則A,B兩點也在拋物線y=ax2+2x+3(a≠0)上.
(1)求出當實數(shù)a變化時,拋物線y=ax2+2x+3(a≠0)的頂點所在直線l的解析式;
(2)請找出在直線l上但不是該拋物線頂點的所有點,并說明理由;
(3)你能根據(jù)特點②的啟示,對一般二次函數(shù)y=ax2+bx+c(a≠0)提出一個猜想嗎?請用數(shù)學語言把你的猜想表達出來,并給予證明.

查看答案和解析>>

同步練習冊答案