【題目】如圖,已知數(shù)軸上有A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),且兩點(diǎn)距離為8個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)圖中如果點(diǎn)A、B表示的數(shù)是互為相反數(shù),那么點(diǎn)A表示的數(shù)是 ;
(2)當(dāng)t=3秒時(shí),點(diǎn)A與點(diǎn)P之間的距離是 個(gè)長(zhǎng)度單位;
(3)當(dāng)點(diǎn)A表示的數(shù)是-3時(shí),用含t的代數(shù)式表示點(diǎn)P表示的數(shù);
(4)若點(diǎn)P到點(diǎn)A的距離是點(diǎn)P到點(diǎn)B的距離的2倍,請(qǐng)直接寫(xiě)出t的值.
【答案】(1)-4;(2)6;(3)-3+2t;(4)8/3 或8.
【解析】
(1)根據(jù)相反數(shù)的概念、結(jié)合圖形解得即可;
(2)根據(jù)點(diǎn)P運(yùn)動(dòng)的速度和時(shí)間計(jì)算即可;
(3)根據(jù)點(diǎn)P運(yùn)動(dòng)的速度和時(shí)間表示即可;
(4)分點(diǎn)P在線段AB上和點(diǎn)P在線段AB的延長(zhǎng)線上兩種情況,列出一元一次方程,解方程即可.
(1)設(shè)點(diǎn)A表示的數(shù)是a,點(diǎn)B表示的數(shù)是b,
則|a|+|b|=8,又|a|=|b|,
∴|a|=4,
∴a=4,
則點(diǎn)A表示的數(shù)是4;
(2)∵P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),
∴當(dāng)t=3秒時(shí),點(diǎn)A與點(diǎn)P之間的距離為6個(gè)單位長(zhǎng)度;
(3)當(dāng)點(diǎn)A為-3時(shí),點(diǎn)P表示的數(shù)是-3+2t;
(4)當(dāng)點(diǎn)P在線段AB上時(shí),AP=2PB,即2t=2(82t),
解得,t=,
當(dāng)點(diǎn)P在線段AB的延長(zhǎng)線上時(shí),AP=2PB,即2t=2(2t8),
解得,t=8,
∴當(dāng)t=或8秒時(shí),點(diǎn)P到A的距離是點(diǎn)P到B的距離的2倍.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,在等邊△ABC中,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類(lèi)比探究】
(2)如圖2,在等邊△ABC中,點(diǎn)M是邊BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了解本校七年級(jí)學(xué)生數(shù)學(xué)學(xué)習(xí)情況,隨機(jī)抽查該年級(jí)若干名學(xué)生進(jìn)行測(cè)試,然后把測(cè)試結(jié)果分為個(gè)等級(jí):,并將統(tǒng)計(jì)結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息解答下列問(wèn)題:
補(bǔ)全條形統(tǒng)計(jì)圖;
等級(jí)為等的所在扇形的圓心角是 度;
如果七年級(jí)共有學(xué)生名,請(qǐng)估算該年級(jí)學(xué)生中數(shù)學(xué)學(xué)習(xí)為等和等的共多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某物流公司現(xiàn)有114噸貨物,計(jì)劃同時(shí)租出A,B兩種型號(hào)的車(chē),王經(jīng)理發(fā)現(xiàn)一個(gè)運(yùn)貨貨單上的一個(gè)信息是:
A型車(chē)(滿(mǎn)載) | B型車(chē)(滿(mǎn)載) | 運(yùn)貨總量 |
3輛 | 2輛 | 38噸 |
1輛 | 3輛 | 36噸 |
根據(jù)以上信息,解析下列問(wèn)題:
(1)1輛A型車(chē)和1輛B型車(chē)都裝滿(mǎn)貨物一次可分別運(yùn)貨多少?lài)崳?/span>
(2)若物流公司打算一次運(yùn)完,且恰好每輛車(chē)都裝滿(mǎn)貨物,請(qǐng)你幫該物流公司設(shè)計(jì)租車(chē)方案。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥DC,∠B=90°,F(xiàn)為DC上一點(diǎn),且FC=AB,E為AD上一點(diǎn),EC交AF于點(diǎn)G.
(1)求證:四邊形ABCF是矩形;
(2)若EA=EG,求證:ED=EC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】包裝廠有工人42人,每個(gè)工人平均每小時(shí)可以生產(chǎn)圓形鐵片120片,或長(zhǎng)方形鐵片80片,兩張圓形鐵片與一張長(zhǎng)方形鐵片可配套成一個(gè)密封圓桶,問(wèn)每天如何安排工人生產(chǎn)圓形和長(zhǎng)方形鐵片能合理地將鐵片配套?設(shè)安排x人生產(chǎn)圓形鐵片,可以列方程:( 。
A.120(42﹣x)=2×80xB.80(42﹣x)=120x
C.2×80(42﹣x)=120xD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AC為直徑作⊙O交BC于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線,交AB于點(diǎn)E,交CA的延長(zhǎng)線于點(diǎn)F.
(1)求證:EF⊥AB;
(2)若∠C=30°,EF=,求EB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形 ABCD ,有以下四個(gè)條件:① AB ∥ CD ;② BC ∥ AD ;③ AB CD ;④ABC ADC .從這四個(gè)條件中任選兩個(gè),能使四邊形 ABCD 成為平行四邊形的選法有( )
A.3 種B.4 種C.5 種D.6 種
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,BD和CD為⊙O的切線,切點(diǎn)分別為B和C.
(1)求證:AC∥OD;
(2)當(dāng)BC=BD,且BD=6cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com