精英家教網(wǎng)如圖,直線l與x軸、y軸的正半軸分別交于A、B兩點,OA、OB的長分別是關(guān)于x的方程x2-14x+4(AB+2)=0的兩個根(OB>OA),P是直線l上A、B兩點之間的一動點(不與A、B重合),PQ∥OB交OA于點Q.
(1)求tan∠BAO的值;
(2)若S△PAQ=
13
S四邊形OQPB時,請確定點P在AB上的位置,并求出線段PQ的長;
(3)當點P在線段AB上運動時,在y軸上是否存在點M,使△MPQ為等腰直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
分析:(1)根據(jù)勾股定理得出OA2+OB2=AB2,求出AB.然后把AB代入等式求出x的值繼而求出OA,OB的值即可;
(2)已知S△PAQ=
1
3
S四邊形OQPB,證明△PQA∽△BOA利用線段比求出AB,AP的值.知道PQ=PA•sin∠BAO,即可求解.
解答:解:(1)∵OA、OB的長分別是關(guān)于x的方程x2-14x+4(AB+2)=0的兩個根,
∴OA+OB=-
b
a
=14,
由已知可得
OA+OB=14
OA•OB=4(AB+2)

又∵OA2+OB2=AB2,
∴(OA+OB)2-2OA•OB=AB2
即142-8(AB+2)=AB2,
∴AB2+8AB-180=0,
∴AB=10或AB=-18(不合題意,舍去),
∴AB=10,
∴x2-14x+48=0,
解得x1=6,x2=8,
∵OB>OA,∴OA=6,OB=8,
∴tan∠BAO=
OB
OA
=
4
3


(2)∵S△PAQ=
1
3
S四邊形OQPB
∴S△PAQ=
1
4
S△AOB,
∵PQ∥BO,精英家教網(wǎng)
∴△PQA∽△BOA,
(
AP
AB
)2=(
PQ
BO
)2=
S△PQA
S△BOA
=
1
4
,
AP
AB
=
1
2
.∵AB=10,
∴AP=5,
又∵tan∠BAO=
4
3

∴sin∠BAO=
4
5
,
∴PQ=PA•sin∠BAO=
4
5
=4


(3)存在,
設(shè)AB的解析式是y=kx+b,
6k+b=0
b=8
,
解得:
k=-
4
3
b=8

則解析式是:y=-
4
3
x+8,
即4x+3y=24(*)
精英家教網(wǎng)
①當∠PQM=90°時,由PQ∥OB且|PQ|=|MQ|此時M點與原點O重合,設(shè)Q(a,0)則P(a,a)
有(a,a)代入(*)得a=
1
2

②當∠MPQ=90°,
由PQ∥OB且|MP|=|PQ|設(shè)Q(a,0)則M(0,a),P(a,a)進而得a=
24
7

③當∠PMQ=90°,由PQ∥OB,|PM|=|MQ|且|OM|=|OQ|=|PQ|
設(shè)Q(a,0)則M(0,a)點P坐標為(a,2a)代入(*)得a=
12
5

綜上所述,y軸上有三個點M1(0,0),M2(0,
24
7
)和M3(0,
12
5
)滿足使△PMQ為等腰直角三角形.
點評:本題綜合考查了一次函數(shù)的性質(zhì)以及三角函數(shù)的有關(guān)知識,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線m與x軸、y軸分別交于點B,A,且A,B兩點的坐標分別為A(0,3),B(4,0).
(1)請求出直線m的函數(shù)解析式;
(2)在x軸上是否存在這樣的點C,使△ABC為等腰三角形?請求出點C的坐標(不需要具體過程),并在坐標系中標出點C的大致位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,直線AB與x軸負半軸、y軸正半軸分別交于A、B兩點.OA、OB的長度分別為a和b,且滿足a2-2ab+b2=0.
(1)判斷△AOB的形狀.
(2)如圖②,正比例函數(shù)y=kx(k<0)的圖象與直線AB交于點Q,過A、B兩點分別作AM⊥OQ于M,BN⊥OQ于N,若AM=9,BN=4,求MN的長.
(3)如圖③,E為AB上一動點,以AE為斜邊作等腰直角△ADE,P為BE的中點,連接PD、PO,試問:線段PD、PO是否存在某種確定的數(shù)量關(guān)系和位置關(guān)系?寫出你的結(jié)論并證明.
精英家教網(wǎng)精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線l與x軸、y軸分別交于點M(8,0),點N(0,6).點P從點N出發(fā),以每秒1個單位長度的速度沿N?O方向運動,點Q從點O出發(fā),以每秒2個單位長度的速度沿O→M的方向運動.已知點P、Q同時出發(fā),當點Q達點M時,P、Q兩精英家教網(wǎng)點同時停止運動,設(shè)運動時間為t秒.
(1)設(shè)四邊形MNPQ的面積為S,求S關(guān)于t的函數(shù)關(guān)系式,并寫出t的取值范圍.
(2)當t為何值時,PQ與l平行.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,直線AB與x軸交于點A,與y軸交于點B.
(1)寫出A,B兩點的坐標;(2)求直線AB的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,直線AB與x軸相交于點A(1,0),則直線AB繞點A旋轉(zhuǎn)90°后所得到的直線解析式可能是( 。

查看答案和解析>>

同步練習(xí)冊答案