在Rt△ABC中,∠C=90°,斜邊c=數(shù)學(xué)公式,兩條直角邊a、b的長為方程x2-(m+1)x+m=0的兩個實數(shù)根,則m的值為________.

2
分析:欲求m的值,可以先解方程,求得方程的兩根,根據(jù)勾股定理即可得到關(guān)于m的方程,即可求得m的值.
解答:解方程x2-(m+1)x+m=0,則x1=m,x2=1
斜邊c=,由勾股定理得m2+12=(2解得m=±2,
又因m為直角邊>0,
∴m=2.
點(diǎn)評:本題綜合考查了勾股定理與一元二次方程,正確求得方程的解是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長為(  )
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊答案