如圖,在△ABC中,AD、BD分別平分∠BAC和∠ABC,延長(zhǎng)AD交△ABC的外接圓于E,連接BE.求證:BE=DE.

證明:∠EBC=∠EAC(同孤所對(duì)圓周角相等).(2分)
∵AD、BD分別平分∠BAC和∠ABC,
∴∠BAE=∠EAC,∠DBC=∠ABD,(1分)
∴∠EBC=∠BAE,(1分)
∴∠EBC+∠DBC=∠BAE+∠ABD.
又∵∠EBC+∠DBC=∠BED(如圖),
∠BAE+∠ABD=∠BDE(三角形外角的性質(zhì)),(1分)
∴∠EBD=∠BDE,(2分)
∴BE=DE(等角對(duì)等邊).(1分)
分析:由圓周角定理可得出∠BAE=∠EAC,∠DBC=∠ABD即∠EBC=∠BAE,再根據(jù)三角形外角的性質(zhì)可得出∠BAE+∠ABD=∠BDE,由等邊對(duì)等角即可得出答案.
點(diǎn)評(píng):本題考查的是圓周角定理及三角形外角的性質(zhì)、角平分線的性質(zhì),熟知以上知識(shí)是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點(diǎn),向斜邊作垂線,畫出一個(gè)新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時(shí)這個(gè)三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點(diǎn)E、D,若BC=10,AC=6cm,則△ACE的周長(zhǎng)是
16
cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案