如圖,AC、BD相交于點O,且AO=DO,試添加一個條件使得△AOB≌△DOC,你添加的條件是:    (只需寫一個).
【答案】分析:線段AC、BD相交于點O,且AO=DO,有一對對頂角∠AOB與∠DOC,添加OB=OC,就能證出△AOB≌△DOC.
解答:解:∵AO=DO,∠AOB=∠DOC,OB=OC,
∴△ABO≌△DOC(SAS).
故答案為OB=OC.
點評:本題考查全等三角形的判定,本題比較簡單.判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

8、如圖,AC,BD相交于點O,AC=BD,AB=CD,寫出圖中兩對相等的角
∠A=∠D
,
∠ABO=∠DCO

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,AC和BD相交于點O,OA=OC,要使△AOB≌△COD還需添加一個條件是
OB=OD
(填上你認為適當?shù)囊粋條件即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、如圖,AC與BD相交于點P,若△ABC≌△DCB,則△ABP≌△DCP,理由是:
∵△ABC≌△DCB
∴AB=CD(全等三角形對應邊相等)
∠A=
∠D

在△ABP和△DCP中
∠A=∠D
∠APB=
∠DPC
(對頂角相等)
AB=CD
∴△ABP≌△DCP  ( AAS )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖,AC與BD相交于點O,已知OA=OC,OB=OD,則△AOB≌△COD的理由是
SAS

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AC,BD相交于點O,且AB=DC,AC=DB.求證:∠ABO=∠DCO.

查看答案和解析>>

同步練習冊答案