【題目】下列運(yùn)算正確的是(
A.x2+x3=x5
B.x8÷x2=x4
C.3x﹣2x=1
D.(x23=x6

【答案】D
【解析】解:A、x2與x3不是同類(lèi)項(xiàng)不能合并,故選項(xiàng)錯(cuò)誤;
B、應(yīng)為x8÷x2=x6 , 故選項(xiàng)錯(cuò)誤;
C、應(yīng)為3x﹣2x=x,故選項(xiàng)錯(cuò)誤;
D、(x23=x6 , 正確.
故選D.
【考點(diǎn)精析】利用同底數(shù)冪的除法對(duì)題目進(jìn)行判斷即可得到答案,需要熟知同底數(shù)冪的除法法則:am÷an=am-n(a≠0,m,n都是正整數(shù),且m>n).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某班進(jìn)行民主選舉班干部,要求每位同學(xué)將自己心中認(rèn)為最合適的一位侯選上,投入推薦箱.這個(gè)過(guò)程是收集數(shù)據(jù)中的( 。
A.確定調(diào)查對(duì)象
B.展開(kāi)調(diào)查
C.選擇調(diào)查方法
D.得出結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】每年淘寶網(wǎng)都會(huì)舉辦“雙十一”購(gòu)物狂歡節(jié),許多商家都會(huì)利用這個(gè)契機(jī)進(jìn)行打折讓利的促銷(xiāo)活動(dòng).甲網(wǎng)店銷(xiāo)售一件A商品的成本為36元,網(wǎng)上標(biāo)價(jià)為110元.“雙十一”活動(dòng)當(dāng)天,為了吸引買(mǎi)主,連續(xù)兩次降價(jià)銷(xiāo)售A商品,問(wèn)平均每次降價(jià)率為多少時(shí),才能使這件A商品的利潤(rùn)率為10%?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)Ax軸的負(fù)半軸上,點(diǎn)D、M分別在邊ABOA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)DM,反比例函數(shù)y =的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N

1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

2)若點(diǎn)P在直線DM上,且使OPM的面積與四邊形OMNC的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A(x1 , y1)是一次函數(shù)y=﹣x+b+1圖象上一點(diǎn),若x1<0,y1<0,則b的取值范圍是(
A.b<0
B.b>0
C.b>﹣1
D.b<﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】探索與研究:
方法1:如圖(a),對(duì)任意的符合條件的直角三角形繞其銳角頂點(diǎn)旋轉(zhuǎn)90°所得,所以
∠BAE=90°,且四邊形ACFD是一個(gè)正方形,它的面積和四邊形ABFE面積相等,而四邊形ABFE面積等于Rt△BAE和Rt△BFE的面積之和,根據(jù)圖示寫(xiě)出證明勾股定理的過(guò)程;
方法2:如圖(b),是任意的符合條件的兩個(gè)全等的Rt△BEA和Rt△ACD拼成的,你能根據(jù)圖示再寫(xiě)一種證明勾股定理的方法嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知某小區(qū)的兩幢10層住宅樓間的距離為AC="30" m,由地面向上依次為第1層、第2層、、第10層,每層高度為3 m.假設(shè)某一時(shí)刻甲樓在乙樓側(cè)面的影長(zhǎng)EC=h,太陽(yáng)光線與水平線的夾角為α

(1) 用含α的式子表示h(不必指出α的取值范圍)

(2) 當(dāng)α30°時(shí),甲樓樓頂B點(diǎn)的影子落在乙樓的第幾層?若α每小時(shí)增加15°,從此時(shí)起幾小時(shí)后甲樓的影子剛好不影響乙樓采光 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在圓心角為90°的扇形OAB中,半徑OA=4,C的中點(diǎn),D、E分別為OA,OB的中點(diǎn),則圖中陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC,∠BAC=90°,點(diǎn)D在射線BC上(與B、C兩點(diǎn)不重合),以AD為邊作正方形ADEF,使點(diǎn)E與點(diǎn)B在直線AD的異側(cè),射線BA與射線CF相交于點(diǎn)G.

(1)若點(diǎn)D在線段BC上,如圖1.

①依題意補(bǔ)全圖1;

②判斷BC與CG的數(shù)量關(guān)系與位置關(guān)系,并加以證明;

(2)若點(diǎn)D在線段BC的延長(zhǎng)線上,且G為CF中點(diǎn),連接GE,AB=,則GE的長(zhǎng)為_____,并簡(jiǎn)述求GE長(zhǎng)的思路.

查看答案和解析>>

同步練習(xí)冊(cè)答案