精英家教網 > 初中數學 > 題目詳情
如圖,A、B為⊙O上兩點,下列尋找弧AB的中點C的方法中正確的有(  )
作法一:連接OA、OB,作∠AOB的角平分線交弧AB于點C;
作法二:連接AB,作OH⊥AB于H,交弧AB于點C;
作法三:在優(yōu)弧AmB上取一點D,作∠ADB的平分線交弧AB于點C;
作法四:分別過A、B作⊙O的切線,兩切線交于點P,連接OP交弧AB于C.
A.1個B.2個C.3個D.4個

作法一:連接OA、OB,作∠AOB的角平分線交弧AB于點C,因為∠COA=∠COB,所以AC弧=BC弧,即點C為弧AB的中點;
作法二:連接AB,作OH⊥AB于H,交弧AB于點C,則OH平分AB所對的弧,即點C為弧AB的中點;
作法三:在優(yōu)弧AmB上取一點D,作∠ADB的平分線交弧AB于點C,則∠ADC=∠BDC,所以AC弧=BC弧,即點C為弧AB的中點;
作法四:分別過A、B作⊙O的切線,兩切線交于點P,連接OP交弧AB于C,連OA、OB,則OA⊥AP,OB⊥BP,易證Rt△OAP≌Rt△OBP,則∠COA=∠COB,所以AC弧=BC弧,即點C為弧AB的中點.

練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖i,半圓O為△ABC的外接半圓,AC為直徑,D為劣弧
BC
上的一動點,P在CB的延長線上,且有∠BAP=∠BDA.
(1)求證:AP是半圓O的切線;
(2)當其它條件不變時,問添加一個什么條件后,有BD2=BE•BC成立?說明理由;
(3)如圖ii,在滿足(2)問的前提下,若OD⊥BC與H,BE=2,EC=4,連接PD,請?zhí)骄克倪呅蜛BDO是什么特殊的四邊形,并求tan∠DPC的值.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,PA、PB是⊙O的切線,切點分別為A、B兩點,點C在⊙O上運動(與A、B兩點不重合),如果∠P=46°,那么∠ACB的度數是______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖矩形ABCD中,過A,B兩點的⊙O切CD于E,交BC于F,AH⊥BE于H,連接EF.
(1)求證:∠CEF=∠BAH;
(2)若BC=2CE=6,求BF的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:單選題

如圖,兩個半圓,大半圓中長為16cm的弦AB平行于直徑CD,且與小半圓相切,則圖中陰影部分的面積為(  )
A.34πcm2B.128πcm2C.32πcm2D.16πcm2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,AB為⊙O的直徑,劣
BC
=
BE
弧BDCE,連接AE并延長交BD于D.
求證:
(1)BD是⊙O的切線;
(2)AB2=AC•AD.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,EB、EC是⊙O的兩條切線,B、C為切點,A是⊙O上的任意一點,若∠A=70°,則∠E=______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,△ABO中,OA=OB,以O為圓心的圓經過AB的中點C,且分別交OA、OB于點E、F.
(1)求證:AB是⊙O的切線;
(2)若△ABO腰上的高等于底邊的一半,且AB=4
3
,求
ECF
的長.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知直線AB是⊙O的切線,A為切點,OB交⊙O于點C,點D在⊙O上,且∠OBA=40°,則∠ADC=______度.

查看答案和解析>>

同步練習冊答案