【題目】根據(jù)下面表格中的對應(yīng)值:

x

3.24

3.25

3.26

ax2+bx+c

0.02

0.01

0.03

判斷關(guān)于x的方程ax2+bx+c0a0)的一個解x的范圍是( 。

A. x3.24B. 3.24x3.25C. 3.25x3.26D. x3.26

【答案】B

【解析】

根據(jù)表中數(shù)據(jù)可得出ax2+bx+c0的值在-0.020.01之間,再看對應(yīng)的x的值即可得.

x3.24時,ax2+bx+c=﹣0.02;x3.25時,ax2+bx+c0.01

∴關(guān)于x的方程ax2+bx+c0a≠0)的一個解x的范圍是3.24x3.25

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,面積為6的平行四邊形紙片ABCD中,AB=3,∠BAD=45°,按下列步驟進(jìn)行裁剪和拼圖

第一步:如圖①,將平行四邊形紙片沿對角線BD剪開,得到△ABD和△BCD紙片,再將△ABD紙片沿AE剪開(E為BD上任意一點(diǎn)),得到△ABE和△ADE紙片;

第二步:如圖②,將△ABE紙片平移至△DCF處,將△ADE紙片平移至△BCG處;

第三步:如圖③,將△DCF紙片翻轉(zhuǎn)過來使其背面朝上置于△PQM處(邊PQ與DC重合,△PQM和△DCF在DC同側(cè)),將△BCG紙片翻轉(zhuǎn)過來使其背面朝上置于△PRN處,(邊PR與BC重合,△PRN和△BCG在BC同側(cè))則由紙片拼成的五邊形PMQRN中,對角線MN長度的最小值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費(fèi);超過1千克,超過的部分按每千克15元收費(fèi).乙公司表示:按每千克16元收費(fèi),另加包裝費(fèi)3元.設(shè)小明快遞物品x千克.

(1)請分別寫出甲、乙兩家快遞公司快遞該物品的費(fèi)用y(元)與x(千克)之間的函數(shù)關(guān)系式;

(2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2012年6月2日新疆科克蘇濕地進(jìn)行第四次生態(tài)補(bǔ)水,補(bǔ)水約46萬米3 , 46萬米3用科學(xué)記數(shù)法表示為( )
A.4.6×1063
B.4.6×1053
C.4.6×1023
D.4.6×10米3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等腰三角形中,若底角等于50°,則頂角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】環(huán)境空氣質(zhì)量問題已經(jīng)成為人們?nèi)粘I钏P(guān)心的重要問題,我國新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》中增加了PM2.5檢測指標(biāo),“PM2.5”是指大氣中危害健康的直徑小于或等于2.5微米的顆粒物,2.5微米即0.0000025米.用科學(xué)記數(shù)法表示0.0000025_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在紙面上有一數(shù)軸(如圖所示),

操作一:(1)折疊紙面,使1表示的點(diǎn)與1表示的點(diǎn)重合,回答一下問題:

2表示的點(diǎn)與______表示的點(diǎn)重合;②π表示的點(diǎn)與______表示的點(diǎn)重合。

操作二:(2)折疊紙面,使1表示的點(diǎn)與3表示的點(diǎn)重合,回答以下問題:

①5表示的點(diǎn)與數(shù)_____表示的點(diǎn)重合;②表示的點(diǎn)與數(shù)_____表示的點(diǎn)重合

操作三:(3)已知在數(shù)軸上點(diǎn)A表示的數(shù)是a,點(diǎn)A移動5個單位,此時點(diǎn)A表示的數(shù)和a是互為相反數(shù),求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個頂點(diǎn)分別是A(﹣3,1),B03),C0,1

1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1

2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用不等式表示:mn的差是非負(fù)數(shù)_____

查看答案和解析>>

同步練習(xí)冊答案