如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線y=數(shù)學(xué)公式(a≠0,x>0)分別交于D、E兩點.
(1)若點D的坐標(biāo)為(4,1),點E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當(dāng)m為何值時,直線l與雙曲線有且只有一個交點?
(2)假設(shè)點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點D為線段AB的n等分點,請直接寫出b的值.

解:(1)①把D(4,1)代入y=得a=1×4=4,
所以反比例函數(shù)解析式為y=(x>0);
設(shè)直線l的解析式為y=kx+t,
把D(4,1),E(1,4)代入得
解得
所以直線l的解析式為y=-x+5;
②直線l向下平移m(m>0)個單位得到y(tǒng)=-x+5-m,
當(dāng)方程組只有一組解時,直線l與雙曲線有且只有一個交點,
化為關(guān)于x的方程得x2+(5-m)x+4=0,
△=(m-5)2-4×4=0,解得m1=1,m2=9,
而m=9時,解得x=-2,故舍去,
所以當(dāng)m=1時,直線l與雙曲線有且只有一個交點;

(2)作DF⊥x軸,如圖,
∵點D為線段AB的n等分點,
∴DA:AB=1:n,
∵DF∥OB,
∴△ADF∽△ABO,
==,即==,
∴AF=,DF=,
∴OF=a-,
∴D點坐標(biāo)為(a-,),
把D(a-,)代入y=得(a-)•=a,
解得b=
分析:(1)①運用待定系數(shù)法可分別得到直線l與雙曲線的解析式;
②直線l向下平移m(m>0)個單位得到y(tǒng)=-x=5-m,根據(jù)題意得方程組只有一組解時,化為關(guān)于x的方程得x2+(5-m)x+4=0,則△=(m-5)2-4×4=0,解得m1=1,m2=9,當(dāng)m=9時,公共點不在第一象限,所以m=1;
(2)作DF⊥x軸,由DF∥OB得到△ADF∽△ABO,根據(jù)相似比可得到AF=,DF=,則D點坐標(biāo)為(a-,),然后把D點坐標(biāo)代入反比例函數(shù)解析式中即可得到b的值.
點評:本題考查了反比例函數(shù)的綜合題:掌握反比例函數(shù)圖象上點的坐標(biāo)特征、待定系數(shù)法求函數(shù)解析式;熟練運用相似比進(jìn)行幾何計算.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•資陽)如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線y=
ax
(a≠0,x>0)分別交于D、E兩點.
(1)若點D的坐標(biāo)為(4,1),點E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當(dāng)m為何值時,直線l與雙曲線有且只有一個交點?
(2)假設(shè)點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點D為線段AB的n等分點,請直接寫出b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線數(shù)學(xué)公式分別交x軸、y軸于A、B兩點,將△OAB繞坐標(biāo)原點O順時針旋轉(zhuǎn)90°得到△OCD.拋物線y=ax2+bx+c經(jīng)過A、C、D三點.
(1)求這條拋物線的解析式;
(2)若將該拋物線向下平移m(m>0)個單位長度,使得頂點落在△OAB內(nèi)部(不包含△OAB的各條邊)時,求m的取值范圍;
(3)設(shè)直線AB與該拋物線的另一個交點為Q,若在x軸上方的拋物線上存在相異的兩點P1、P2,使△P1AQ與△P2AQ 的面積相等,且等于t,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年重慶市南開中學(xué)九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
(1)點C的坐標(biāo)為______;點D的坐標(biāo)為______.并求出拋物線的解析式;
(2)若正方形以每秒個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.


查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年四川省資陽市中考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知直線l分別與x軸、y軸交于A,B兩點,與雙曲線y=(a≠0,x>0)分別交于D、E兩點.
(1)若點D的坐標(biāo)為(4,1),點E的坐標(biāo)為(1,4):
①分別求出直線l與雙曲線的解析式;
②若將直線l向下平移m(m>0)個單位,當(dāng)m為何值時,直線l與雙曲線有且只有一個交點?
(2)假設(shè)點A的坐標(biāo)為(a,0),點B的坐標(biāo)為(0,b),點D為線段AB的n等分點,請直接寫出b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年福建省龍巖市中考適應(yīng)性考試數(shù)學(xué)試卷(一)(解析版) 題型:解答題

如圖,已知直線分別交y軸、x軸于A,B兩點,以線段AB為邊向上作正方形ABCD過點A,D,C的拋物線y=ax2+bx+1與直線的另一交點為點E
(1)點C的坐標(biāo)為______;點D的坐標(biāo)為______.并求出拋物線的解析式;
(2)若正方形以每秒個單位長度的速度沿射線AB下滑,直至頂點D落在x軸上時停止.設(shè)正方形落在x軸下方部分的面積為S,求S關(guān)于滑行時間t的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;
(3)在(2)的條件下,拋物線與正方形一起平移,同時停止,求拋物線上C,E兩點間的拋物線弧所掃過的面積.


查看答案和解析>>

同步練習(xí)冊答案