【題目】古希臘的畢達哥拉斯學派由古希臘哲學家畢達哥拉斯所創(chuàng)立,畢達哥拉斯學派認為數(shù)是萬物的本原,事物的性質是由某種數(shù)量關系決定的,如他們研究各種多邊形數(shù):記第n個k邊形數(shù)N(n,k)=n2+n(n≥1,k≥3,k、n都為整數(shù)),
如第1個三角形數(shù)N(1,3)=×12+×1=1;
第2個三角形數(shù)N(2,3)=×22+×2=3;
第3個四邊形數(shù)N(3,4)=×32+×3=9;
第4個四邊形數(shù)N(4,4)=×42+×4=16.
(1)N(5,3)=________,N(6,5)=________;
(2)若N(m,6)比N(m+2,4)大10,求m的值;
(3)若記y=N(6,t)-N(t,5),試求出y的最大值.
【答案】(1)15;51;(2)7;(3)當t=5時,y有最大值,其最大值為16.
【解析】試題分析:(1)根據(jù)N(n,k)的定義,求出N(5,3),N(6,5)的值即可.
(2)根據(jù)N(m,6)比N(m+2,4)大10,列出方程即可解決問題.
(3)首先根據(jù)y=N(6,t)-N(t,5),構建二次函數(shù),然后根據(jù)二次函數(shù)的性質即可解決問題.
試題解析:(1)N(5,3)=×52+×5
=12.5+2.5
=15,
N(6,5)=×62+×6
=54-3
=51,
(2)∵N(m,6)比N(m+2,4)大10,
∴×m2+×m-×(m+2)2-×(m+2)=10,
∴2m2-m-(m+2)2=10,
整理,可得
m2-5m-14=0,
解得m=7或m=-2.
(3)y=N(6,t)-N(t,5)
=×62+×6-×t2-×t
=18t-36+12-3t-1.5t2+0.5t
=-1.5(t- )2+,
∵r≥1,t≥3,k,n都為整數(shù),-1.5<0,
∴t=5時,y有最大值,最大值為16,
∴y的最大值為16.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1.直線AD∥EF,點B,C分別在EF和AD上,∠A=∠ABC,BD平分∠CBF.
(1)求證:AB⊥BD;
(2)如圖2,BG⊥AD于點G,求證:∠ACB=2∠ABG;
(3)在(2)的條件下,如圖3,CH平分∠ACB交BG于點H,設∠ABG=α,請直接寫出∠BHC的度數(shù).(用含α的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC,BD是對角線。將△DCB繞著點D順時針旋轉45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG。則下列結論:①四邊形AEGF是菱形;②△AED≌△GED;③∠DFG=112.5°;④BC+FG=1.5.其中正確的結論是( )
A. ①②③④ B. ①②③ C. ①② D. ②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)思考探究:如圖①,的內角的平分線與外角的平分線相交于點,請?zhí)骄?/span>與的關系是______.
(2)類比探究:如圖②,四邊形中,設,,,四邊形的內角與外角的平分線相交于點.求的度數(shù).(用,的代數(shù)式表示)
(3)拓展遷移:如圖③,將(2)中改為,其它條件不變,請在圖③中畫出,并直接寫出_____.(用,的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,O為坐標原點,點A的坐標為(a,a),點B的坐標(b,c),且a、b、c滿足.
(1)若a沒有平方根,判斷點A在第幾象限并說明理由.
(2)連AB、OA、OB,若△OAB的面積大于5而小于8,求a的取值范圍;
(3)若兩個動點M(2m,3m-5),N(n-1,-2n-3),請你探索是否存在以兩個動點M、N為端點的線段MN∥AB,且MN=AB.若存在,求出M、N兩點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC,則下列結論:①abc<0;②;③ac﹣b+1=0;④OAOB=﹣.其中正確結論的序號是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點的坐標為(0,4),線段的位置如圖所示,其中點的坐標為(,),點的坐標為(3,).
(1)將線段平移得到線段,其中點的對應點為,點的對應點為點.
①點平移到點的過程可以是:先向 平移 個單位長度,再向 平移 個單位長度;
②點的坐標為 .
(2)在(1)的條件下,若點的坐標為(4,0),連接,畫出圖形并求的面積.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com