如圖,△ABC是等邊三角形,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點(diǎn)作一個(gè)60°角∠NDM,角的兩邊分別交AB、AC邊于M、N兩點(diǎn),連接MN.試探究BM、MN、CN之間的數(shù)量關(guān)系,并加以證明.

解:探究結(jié)論:BM+CN=NM.
證明:延長AC至E,使CE=BM,連接DE,
∵△BDC是頂角∠BDC=120°的等腰三角形,△ABC是等邊三角形,
∴∠BCD=30°,
∴∠ABD=∠ACD=90°,
即∠ABD=∠DCE=90°,
∴在Rt△DCE和Rt△DBM中,

∴Rt△DCE≌Rt△DBM(HL),
∴∠BDM=∠CDE,
又∵∠BDC=120°,∠MDN=60°,
∴∠BDM+∠NDC=∠BDC-∠MDN=60°,
∴∠CDE+∠NDC=60°,即∠NDE=60°,
∴∠MDN=∠NDE=60°
∴DM=DE(上面已經(jīng)全等)
在△DMN和△DEN中

∴△DMN≌△DEN(SAS),
∴BM+CN=NM.
分析:延長AC至E,使CE=BM,連接DE,將BM,CN放在一條直線上,利用已知證明△DCE≌△BMD,再證出△DMN≌△DEN,從而得出答案.
點(diǎn)評:此題主要考查了等腰三角形與等邊三角形的性質(zhì),作出CE=BM,連接DE,將BM,CN放在一條直線上之是解決問題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點(diǎn)B,C,且與BA,CA的延長線分別交于點(diǎn)D,E,弦DF精英家教網(wǎng)∥AC,EF的延長線交BC的延長線于點(diǎn)G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點(diǎn)D作BC的平行線交AC于E,則△ADE的三個(gè)內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點(diǎn),∠BAD=15°,將△ABD繞點(diǎn)A點(diǎn)逆時(shí)針方向旋轉(zhuǎn)后到達(dá)△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長與CE交于點(diǎn)E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習(xí)冊答案