如圖所示,將長(zhǎng)方形ABCD沿直線BD折疊,使C點(diǎn)落在C′處,BC′交AD于E.
(1)求證:BE=DE;
(2)若AD=8,AB=4,求△BED的面積.

(1)見(jiàn)解析   (2)10

解析試題分析:(1)先根據(jù)折疊的性質(zhì)得出∠1=∠2,再由矩形的對(duì)邊平行,內(nèi)錯(cuò)角相等,所以∠1=∠3,然后根據(jù)角之間的等量代換可知DE=BE;
(2)設(shè)DE=x,則AE=8﹣x,BE=x,在△ABE中,運(yùn)用勾股定理得到BE2=AB2+AE2,列出關(guān)于x的方程,解方程求出x的值,再根據(jù)三角形的面積公式,即可求得△BED的面積.
(1)證明:∵△BDC′是由△BDC沿直線BD折疊得到的,
∴∠1=∠2,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠1=∠3,
∴∠2=∠3,
∴BE=DE;(2)解:設(shè)DE=x,則AE=AD﹣DE=8﹣x,
在△ABE中,∵∠A=90°,BE=DE=x,
∴BE2=AB2+AE2,
∴x2=42+(8﹣x)2
∴x=5,
∴△BED的面積=DE×AB=×5×4=10.

點(diǎn)評(píng):此題通過(guò)折疊變換考查了三角形的有關(guān)知識(shí),解題過(guò)程中應(yīng)注意折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),根據(jù)軸對(duì)稱(chēng)的性質(zhì),折疊前后對(duì)應(yīng)邊、對(duì)應(yīng)角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:浙教版(2014) 八年級(jí)下 題型:

教育局為了了解本地區(qū)八年級(jí)學(xué)生數(shù)學(xué)基本功情況,從兩個(gè)不同的學(xué)校分別抽取一部分學(xué)生進(jìn)行數(shù)學(xué)基本功比賽.其中A校40人,平均成績(jī)?yōu)?5分;B校50人,平均成績(jī)?yōu)?5分.

(1)小李認(rèn)為這兩個(gè)學(xué)校的平均成績(jī)?yōu)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30R0/0451/0002/3065318027964d30b5a43bc1a5cd1c5e/A/Image1.gif" width=16 HEIGHT=41>×(85+95)=90(分).他的想法對(duì)嗎?若不對(duì)請(qǐng)寫(xiě)出你認(rèn)為正確的答案.

(2)其他條件不變,當(dāng)A校抽查的人數(shù)為多少人時(shí),所抽查兩校學(xué)生的平均成績(jī)才是90分?

(3)根據(jù)上面數(shù)據(jù):a1,a2,…,am;b1,b2,…,bn;c1,c2,…,cp;d1,d2,…,dq.每一組數(shù)據(jù)的平均數(shù)分別為a、b、c、d.將這四組數(shù)據(jù)合并為一組數(shù)據(jù):a1,a2,…,am,b1,b2,…,bn,c1,c2,…,cp,d1,d2,…,dq

問(wèn)當(dāng)m、n、p、q滿足什么條件時(shí),它的平均數(shù)為(a+b+c+d)?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:北師大版(新課標(biāo)) 九年級(jí)(下) 題型:

在時(shí)刻為8∶30時(shí),時(shí)鐘上的時(shí)針和分針之間的夾角為

[  ]

A.

85°

B.

75°

C.

70°

D.

60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2015屆初中數(shù)學(xué)蘇教版八年級(jí)上冊(cè)第一章練習(xí)卷(解析版) 題型:選擇題

已知:如圖所示B、CD三點(diǎn)在同一條直線上,AC=CD,B= E=90°,ACCD,則不正確的結(jié)論是( 。

AAD互為余角 BA=2

CABC≌△CED D1=2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如果用(7,8)表示七年級(jí)八班,那么八年級(jí)七班可表示成__________。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖;在等腰梯形ABCD中,AD=2,BC=4,DC=,高DF=   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,在梯形ABCD中,AD∥BC,AB=CD,E、F、G、H分別為邊AB、BC、CD、DA的中點(diǎn),求證:四邊形EFGH為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,等腰梯形ABCD中,AD∥BC,∠B=450,P是BC邊上一點(diǎn),△PAD的面積為,設(shè)AB=x,AD=y。

(1)求y與x的函數(shù)關(guān)系式;
(2)若∠APD=450,當(dāng)y=1時(shí),求PB·PC的值;
(3)若∠APD=900,求y的最小值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,D是△ABC的邊AB上一點(diǎn),CN∥AB,DN交AC于點(diǎn)M,若MA=MC.

(1)求證:CD=AN;
(2)若AC⊥DN,∠CAN=30°,MN=1,求四邊形ADCN的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案