【題目】如圖,拋物線y=ax2+4x+c(a≠0)與反比例函數(shù)y=的圖象相交于點(diǎn)B,且點(diǎn)B的橫坐標(biāo)為5,拋物線與y軸交于點(diǎn)C(0,6),A是拋物線的頂點(diǎn),P和Q分別是x軸和y軸上的兩個(gè)動(dòng)點(diǎn),則AQ+QP+PB的最小值為_____.
【答案】
【解析】
根據(jù)題意求得B的坐標(biāo),然后根據(jù)待定系數(shù)法求得拋物線的解析式,從而求得頂點(diǎn)A的坐標(biāo),求得A關(guān)于y軸的對(duì)稱點(diǎn)A′(-2,10),B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)B′為(5,-1),根據(jù)兩點(diǎn)之間線段最短,即可判斷AQ+QP+PB=A′B′是AQ+QP+PB的最小值,利用勾股定理求得即可.
∵點(diǎn)B在反比例函數(shù)y=的圖象,且點(diǎn)B的橫坐標(biāo)為5,
∴點(diǎn)B的縱坐標(biāo)為:y==1,
∴B(5,1),
∵拋物線y=ax2+4x+c(a≠0)與反比例函數(shù)y=的圖象相交于點(diǎn)B,與y軸交于點(diǎn)C(0,6),
∴,解得,
∴拋物線為y=﹣x2+4x+6,
∵y=﹣x2+4x+6=﹣(x﹣2)2+10,
∴A(2,10),
∴A關(guān)于y軸的對(duì)稱點(diǎn)A′(﹣2,10),
∵B(5,1),
∴B點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn)B′為(5,﹣1),
連接A′B′交x軸于P,交y軸于Q,此時(shí)AQ+QP+PB的值最小,即AQ+QP+PB=A′B′,
A′B′==,
故AQ+QP+PB的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知直線與直線相交于點(diǎn)A,與軸相交于點(diǎn)B,與軸相交于點(diǎn)C,拋物線經(jīng)過(guò)點(diǎn)O、點(diǎn)A和點(diǎn)B,已知點(diǎn)A到軸的距離等于2.
(1)求拋物線的解析式;
(2)點(diǎn)H為直線上方拋物線上一動(dòng)點(diǎn),當(dāng)點(diǎn)H到的距離最大時(shí),求點(diǎn)H的坐標(biāo);
(3)如圖,P為射線OA的一個(gè)動(dòng)點(diǎn),點(diǎn)P從點(diǎn)O出發(fā),沿著OA方向以每秒個(gè)單位長(zhǎng)度的速度移動(dòng),以OP為邊在OA的上方作正方形OPMN,設(shè)正方形POMN與△OAC重疊的面積為S,設(shè)移動(dòng)時(shí)間為t秒,直接寫(xiě)出S與t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)科所在相同條件下做某作物種子發(fā)芽率的實(shí)驗(yàn),結(jié)果如下表所示:
種子個(gè)數(shù) | 200 | 300 | 500 | 700 | 800 | 900 | 1000 |
發(fā)芽種子個(gè)數(shù) | 187 | 282 | 435 | 624 | 718 | 814 | 901 |
發(fā)芽種子率 | 0.935 | 0.940 | 0.870 | 0.891 | 0.898 | 0.904 | 0.901 |
下面有四個(gè)推斷:
①種子個(gè)數(shù)是700時(shí),發(fā)芽種子的個(gè)數(shù)是624,所以種子發(fā)芽的概率是0.891;
②隨著參加實(shí)驗(yàn)的種子數(shù)量的增加,發(fā)芽種子的頻率在0.9附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)種子發(fā)芽的概率約為0.9(精確到0.1);
③實(shí)驗(yàn)的種子個(gè)數(shù)最多的那次實(shí)驗(yàn)得到的發(fā)芽種子的頻率一定是種子發(fā)芽的概率;
④若用頻率估計(jì)種子發(fā)芽的概率約為0.9,則可以估計(jì)種子中大約有的種子不能發(fā)芽.
其中合理的是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價(jià)不低于成本,且不高于70元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 40 | 50 | 60 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入成本);
(3)試說(shuō)明(2)中總利潤(rùn)W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的弦,C為弦AB上一點(diǎn),設(shè)AC=m,BC=n(m>n),將弦AB繞圓心O旋轉(zhuǎn)一周,若線段BC掃過(guò)的面積為(m2﹣n2)π,則=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖1是某市2009年4月5日至14日每天最低氣溫的折線統(tǒng)計(jì)圖.
(1)圖2是該市2007年4月5日至14日每天最低氣溫的頻數(shù)分布直方圖,根據(jù)圖1提供的信息,補(bǔ)全圖2中頻數(shù)分布直方圖;
(2)在這10天中,最低氣溫的眾數(shù)是____,中位數(shù)是____,方差是_____.
(3)請(qǐng)用扇形圖表示出這十天里溫度的分布情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知C為線段AB上的一點(diǎn),△ACM和△CBN都是等邊三角形,AN和CM相交于F點(diǎn),BM和CN交于E點(diǎn).求證:△CEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(4,4),請(qǐng)解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(2)將△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A2B2C2,并求出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過(guò)的路徑長(zhǎng)(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們定義:如果圓的兩條弦互相垂直,那么這兩條弦互為“十字弦”,也把其中的一條弦叫做另一條弦的“十字弦”.如:如圖,已知的兩條弦,則、互為“十字弦”,是的“十字弦”,也是的“十字弦”.
(1)若的半徑為5,一條弦,則弦的“十字弦”的最大值為______,最小值為______.
(2)如圖1,若的弦恰好是的直徑,弦與相交于,連接,若,,,求證:、互為“十字弦”;
(3)如圖2,若的半徑為5,一條弦,弦是的“十字弦”,連接,若,求弦的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com