(2004•淮安)正六邊形的外接圓的半徑與內(nèi)切圓的半徑之比為( )
A.1:
B.:2
C.2:
D.:1
【答案】分析:從內(nèi)切圓的圓心和外接圓的圓心向三角形的連長(zhǎng)引垂線,構(gòu)建直角三角形,解三角形即可.
解答:解:設(shè)正六邊形的半徑是r,
則外接圓的半徑r,
內(nèi)切圓的半徑是正六邊形的邊心距,因而是,
因而正六邊形的外接圓的半徑與內(nèi)切圓的半徑之比為2:
故選C.
點(diǎn)評(píng):正多邊形的計(jì)算一般是通過中心作邊的垂線,連接半徑,把正多邊形中的半徑,邊長(zhǎng),邊心距,中心角之間的計(jì)算轉(zhuǎn)化為解直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年湖北省孝感市中考數(shù)學(xué)一模試卷(解析版) 題型:選擇題

(2004•淮安)正六邊形的外接圓的半徑與內(nèi)切圓的半徑之比為( )
A.1:
B.:2
C.2:
D.:1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•淮安)在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x+5的圖象交x軸于點(diǎn)B,與正比例函數(shù)y=kx(k≠0)的圖象交于第一象限內(nèi)的點(diǎn)A.(如圖①)
(1)以0、A、B三點(diǎn)為頂點(diǎn)畫平行四邊形,求這個(gè)平行四邊形第四個(gè)頂點(diǎn)C的坐標(biāo);(用含k的代數(shù)式表示)
(2)若以0、A、B、C為頂點(diǎn)的平行四邊形為矩形,求k的值;(圖②備用)
(3)將(2)中的矩形OABC繞點(diǎn)O旋轉(zhuǎn),使點(diǎn)A落在坐標(biāo)軸的正半軸上,求所得矩形與原矩形重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•淮安)已知:兩個(gè)正整數(shù)的和與積相等,求這兩個(gè)正整數(shù).
解:不妨設(shè)這兩個(gè)正整數(shù)為a、b,且a≤b.
由題意,得ab=a+b,(*)
則ab=a+b≤b+b=2b,所以a≤2,
因?yàn)閍為正整數(shù),所以a=1或2,
①當(dāng)a=1時(shí),代入等式(*),得1•b=1+b,b不存在;
②當(dāng)a=2時(shí),代入等式(*),得2•b=2+b,b=2.
所以這兩個(gè)正整數(shù)為2和2.
仔細(xì)閱讀以上材料,根據(jù)閱讀材料的啟示,思考是否存在三個(gè)正整數(shù),它們的和與積相等試說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年江蘇省淮安市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2004•淮安)正六邊形的外接圓的半徑與內(nèi)切圓的半徑之比為( )
A.1:
B.:2
C.2:
D.:1

查看答案和解析>>

同步練習(xí)冊(cè)答案