在△ABC中,∠C=50°,按圖中虛線將∠C剪去后,∠1+∠2等于______度.
230°.

試題分析:首先根據(jù)三角形內(nèi)角和可以計算出∠A+∠B的度數(shù),再根據(jù)四邊形內(nèi)角和為360°可算出∠1+∠2的結(jié)果.
試題解析:∵△ABC中,∠C=50°,
∴∠A+∠B=180°-∠C=130°,
∵∠A+∠B+∠1+∠2=360°,
∴∠1+∠2=360°-130°=230°.
考點: 1.多邊形內(nèi)角與外角;2.三角形內(nèi)角和定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AD為△ABC的中線,
(1)作△ABD的中線BE;
(2)作△BED的BD邊上的高EF;
(3)若△ABC的面積為60,BD=10,則點E到BC邊的距離為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC上,且BE=BD,連結(jié)AE、DE、DC.

①求證:△ABE≌△CBD;
②若∠CAE=30°,求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面坐標(biāo)系中,點A、點B分別在x軸、y軸的正半軸上,且OA=OB,另有兩點C(a,b)和D(b,-a)(a、b均大于0);

(1)連接OD、CD,求證:∠ODC=450
(2)連接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度數(shù);
(3)若a=b,在線段OA上有一點E,且AE=3,CE=5,AC=7,求⊿OCA 的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在矩形ABCD中,點E是AD的中點,∠EBC的平分線交CD于點F,將△DEF沿EF折疊,點D恰好落在BE上M點處,延長BC、EF交于點N.有下列四個結(jié)論:①DF=CF;②BF⊥EN;③△BEN是等邊三角形;④SBEF=3SDEF.其中,將正確結(jié)論的序號全部選對的是( 。

A.①②③
B.①②④
C.②③④
D.①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對“等角對等邊”這句話的理解,正確的是    (    )
A.只要兩個角相等,那么它們所對的邊也相等
B.在兩個三角形中,如果有兩個角相等,那么它們所對的邊也相等
C.在一個三角形中,如果有兩個角相等,那么它們所對的邊也相等
D.以上說法都是錯誤的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖, 直線上有三個正方形,若的面積分別為5和11, 則的面積為(  )
A.4B.6C.16D.55

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在Rt△ABC中,∠ACB=90°,AB=10,CD是AB邊上的中線,則CD的長是   (  )
A.20B.10 C.5D.52

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,矩形OABC的邊OA長為2,邊AB長為1,OA在數(shù)軸上,以原點O為圓心,對角線OB的長為半徑畫弧,交正半軸于一點,則這個點表示的實數(shù)是 (  )
A.2.5B.2
C.D.

查看答案和解析>>

同步練習(xí)冊答案