【題目】如圖,拋物線y=ax2+4x+c過點(diǎn)A(6,0)、B(3,),與y軸交于點(diǎn)C.聯(lián)結(jié)AB并延長,交y軸于點(diǎn)D.
(1)求該拋物線的表達(dá)式;
(2)求△ADC的面積;
(3)點(diǎn)P在線段AC上,如果△OAP和△DCA相似,求點(diǎn)P的坐標(biāo).
【答案】(1)y=-x2+4x-6;(2)S△ADC=27;(3)點(diǎn)P的坐標(biāo)為(2,-4)或(,-).
【解析】
(1)將A(6,0),B(3,)代入y=ax2+4x+c,即可求出a,c值,進(jìn)一步寫出拋物線解析式;
(2)分別求拋物線,直線與坐標(biāo)軸交點(diǎn)D,C的坐標(biāo),可直接求出△ADC的面積;
(3)先求出∠OAC=∠OCA=45°,再分類討論△OAP和△DCA相似的兩種情況,求出AP長度,可利用特殊角進(jìn)一步求出相關(guān)線段的長度,即可寫出點(diǎn)P的坐標(biāo).
解:(1)將A(6,0),B(3,)代入y=ax2+4x+c,
得,,
解得,a=-,c=-6,
∴該拋物線解析式為:y=-x2+4x-6;
(2)將A(6,0),B(3,)代入y=kx+b,
得,,
解得,k=-,b=3,
∴yAB=-x+3,
當(dāng)x=0時(shí),y=3,
∴D(0,3),OD=3,
在拋物線y=-x2+4x-6中,
當(dāng)x=0時(shí),y=-6,
∴C(0,-6),OC=6,
∴DC=OC+OD=9,
∵A(6,0),
∴OA=6,
∴S△ADC=DCOA=27;
(3)由(2)知,OC=OA=6,
∴△AOC為等腰直角三角形,
∴∠OAC=∠OCA=45°,AC=OA=6,
如圖所示,連接OP,過點(diǎn)P作PH⊥OA于H,
則△PHA為等腰直角三角形,
①當(dāng)△DCA∽OAP時(shí),
=,
即=,
∴AP=4,
∴HP=HA=AP=4,OH=OA-HA=2,
∴P(2,-4);
②當(dāng)△DCA∽△PAO時(shí),
=,
即=,
∴PA=,
∴HP=HA=,
∴OH=OA-AH=,
∴P(,-),
綜上所述,點(diǎn)P的坐標(biāo)為(2,-4)或(,-).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將等邊三角形ABC折疊,使得點(diǎn)A落在BC邊上的點(diǎn)D處,折痕為EF,點(diǎn)E,F分別在AB和AC邊上.若AB=6,BD=2,則AE:AF的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了提高學(xué)生學(xué)科能力,決定開設(shè)以下校本課程:A.文學(xué)院;B.小小數(shù)學(xué)家;C.小小外交家;D、未來科學(xué)家.為了了解學(xué)生最喜歡哪一項(xiàng)校本課程,學(xué)校隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請回答下列問題:
(1)這次統(tǒng)計(jì)共抽查了 名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示C類別的扇形圓心角度數(shù)為 .
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)一班想從表達(dá)能力很強(qiáng)的甲、乙、丙、丁四名同學(xué)中,任選2名參加小小外交家小組,請用列表或畫樹狀圖的方法求恰好同時(shí)選中甲、乙兩名同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知已知拋物線經(jīng)過原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對稱軸與x軸交于點(diǎn)D,直線y=﹣2x﹣1經(jīng)過拋物線上一點(diǎn)B(﹣2,m)且與y軸交于點(diǎn)C,與拋物線的對稱軸交于點(diǎn)F.
(1)求m的值及該拋物線的解析式
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo).
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對稱軸向上以每秒1個(gè)單位長度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請直接寫出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長為1,格點(diǎn)三角形(頂點(diǎn)是網(wǎng)格線的交點(diǎn)的三角形)ABC的頂點(diǎn)A,B的坐標(biāo)分別為(-4,5),(-2,1).
(1)寫出點(diǎn)C及點(diǎn)C關(guān)于y軸對稱的點(diǎn)C′的坐標(biāo);
(2)請作出△ABC關(guān)于y軸對稱的△A′B′C′;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解我市九年級(jí)學(xué)生身體素質(zhì)情況,從全市九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次體育考試科目測試(把測試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí):良好;C級(jí):及格;D級(jí):不及格),并將測試結(jié)果繪成了如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)統(tǒng)計(jì)圖中的信息解答下列問題:
(1)本次抽樣測試的學(xué)生人數(shù)是 ;
(2)圖1中∠α的度數(shù)是 °,把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)全市九年級(jí)有學(xué)生6200名,如果全部參加這次體育科目測試,請估計(jì)不及格的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊長為4,∠A=60°,E是邊AD的中點(diǎn),F是邊BC上的一個(gè)動(dòng)點(diǎn),EG=EF,且∠GEF=60°,則GB+GC的最小值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】母親節(jié)前,某淘寶店從廠家購進(jìn)某款網(wǎng)紅禮盒,已知該款禮盒每個(gè)成本價(jià)為30元.經(jīng)市場調(diào)查發(fā)現(xiàn),該禮盒每天的銷售量y(個(gè))與銷售單價(jià)x(元)之間滿足一次函數(shù)關(guān)系.當(dāng)該款禮盒每個(gè)售價(jià)為40元時(shí),每天可賣出300個(gè);當(dāng)該款禮盒每個(gè)售價(jià)為55元時(shí),每天可賣出150個(gè).
(1)求y與x之間的函數(shù)解析式(不要求寫出x的取值范圍);
(2)若該店老板想達(dá)到每天不低于240個(gè)的銷售量,則該禮盒每個(gè)售價(jià)定為多少元時(shí),每天的銷售利潤最大,最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,2),B(2,2),C(-1,-2),拋物線F:y=x2-2mx+m2-2與直線x=-2交于點(diǎn)P.
(1)當(dāng)拋物線F經(jīng)過點(diǎn)C時(shí),求它的解析式;
(2)設(shè)點(diǎn)P的縱坐標(biāo)為yP,求yP的最小值,此時(shí)拋物線F上有兩點(diǎn)(x1,y1),(x2,y2),且x1<x2≤-2,比較y1與y2的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com