計算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
=( 。
A、
98
99
B、
49
97
C、
4
9
D、
49
99
分析:首先將原式變形為
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
),然后利用分?jǐn)?shù)的加減運(yùn)算可得
1
2
×(1-
1
99
),則可求得答案.
解答:解:
1
1×3
+
1
3×5
+
1
5×7
+…+
1
97×99
=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
)=
1
2
×(1-
1
99
)=
1
2
×
98
99
=
49
99

故選D.
點評:此題考查了分式的加減運(yùn)算的應(yīng)用,考查了學(xué)生的觀察歸納能力.此題難度適中,解題的關(guān)鍵是將原式變形為
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+…+
1
97
-
1
99
).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面計算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11
的過程,然后填空.
解:因為
1
1×3
=
1
2
1
1
-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
)…
1
9×11
=
1
2
1
9
-
1
11

所以
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11

=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
5
-
1
7
)…+
1
2
1
9
-
1
11

=
1
2
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
…+
1
9
-
1
11
)=
1
2
1
1
-
1
11
)=
5
11

以上方法為裂項求和法,請類比完成:
(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
18×20
=
 

(2)在和式
1
1×3
+
1
3×5
+
1
5×7
+…+( 。=
6
13
中最未一項為
 

(3)已知-3x2ya+1+x3y-3x4-2是五次四項式,單項式-3x3by3-a與多項式的次數(shù)相同,求
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
+
1
6×7
+
1
7×8
+
1
8×9
-
2
b
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察:
1
2
=
1
1×2
=
1
1
-
1
2
,
1
6
=
1
2×3
=
1
2
-
1
3
,
1
12
=
1
3×4
=
1
3
-
1
4
1
20
=
1
4×5
=
1
4
-
1
5
,
1
30
=
1
5×6
=
1
5
-
1
6
,…
(1)猜想:請你猜想出表示(1)中的特點的一般規(guī)律,用含x(x表示整數(shù))的等式表示出來
 

(2)驗證:
(3)運(yùn)用:請利用上述規(guī)律,解方程
1
(x-4)(x-3)
+
1
(x-3)(x-2)
+
1
(x-2)(x-1)
+
1
(x-1)x
+
1
x(x+1)
=
1
x+1

解:原方程可變形如下:
(4)拓展:計算
1
1×3
+
1
3×5
+
1
5×7
+
…+
1
2009×2011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知1-
1
2
=
1
2
,
1
2
-
1
3
=
1
6
,
1
3
-
1
4
=
1
12
,…根據(jù)這些等式解答下列各題:
(1)求值:
1
1×2
+
1
2×3
+
1
3×4
+
1
4×5
+
1
5×6
;
(2)化簡
1
1×2
+
1
2×3
+
1
3×4
+…+
1
n(n+1)
;
(3)用類似方法計算
1
1×3
+
1
3×5
+
1
7×9
+…+
1
2007×2009

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•大慶)已知
1
1×3
=
1
2
×(1-
1
3
)

1
3×5
=
1
2
×(
1
3
-
1
5
)

1
5×7
=
1
2
×(
1
5
-
1
7
)


依據(jù)上述規(guī)律
計算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
11×13
的結(jié)果為
6
13
6
13
(寫成一個分?jǐn)?shù)的形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面計算
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11
的過程,然后填空.
解:因為
1
1×3
=
1
2
1
1
-
1
3
),
1
3×5
=
1
2
1
3
-
1
5
)…
1
9×11
=
1
2
1
9
-
1
11

所以
1
1×3
+
1
3×5
+
1
5×7
+…+
1
9×11

=
1
2
1
1
-
1
3
)+
1
2
1
3
-
1
5
)+
1
2
1
3
-
1
7
)…+
1
2
1
9
-
1
11

=
1
2
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
…+
1
9
-
1
11

=
1
2
1
1
-
1
11

=
5
11

以上方法為裂項求和法,請類比完成:
(1)
1
2×4
+
1
4×6
+
1
6×8
+…+
1
18×20
=
9
40
9
40

(2)在和式
1
1×3
+
1
3×5
+
1
5×7
+…+
1
11×13
1
11×13
=
6
13
中最未一項為
1
11×13
1
11×13

查看答案和解析>>

同步練習(xí)冊答案