如圖是用硬紙板做成的四個(gè)全等的直角三角形,兩精英家教網(wǎng)直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c和一個(gè)邊長(zhǎng)為c的正方形,請(qǐng)你將它們拼成一個(gè)能證明勾股定理的圖形.
(1)畫(huà)出拼成的這個(gè)圖形的示意圖.
(2)證明勾股定理.
分析:勾股定理的證明可以通過(guò)圖形的面積之間的關(guān)系來(lái)完成.
解答:精英家教網(wǎng)解法一:(1)如圖;

(2)證明:∵大正方形的面積表示為(a+b)2大正方形的面積也可表示為c2+4×
1
2
ab
∴(a+b)2=c2+4×
1
2
ab,a2+b2+2ab=c2+2ab
∴a2+b2=c2
即直角三角形兩直角邊的平方和等于斜邊的平方.

解法二:(1)如圖

(2)證明:∵大正方形的面積表示為:c2精英家教網(wǎng)
又可以表示為:
1
2
ab×4+(b-a)2
∴c2=
1
2
ab×4+(b-a)2,c2=2ab+b2-2ab+a2,
∴c2=a2+b2
即直角三角形兩直角邊的平方和等于斜邊的平方.
點(diǎn)評(píng):利用三角形和正方形邊長(zhǎng)的關(guān)系進(jìn)行組合圖形,利用面積的關(guān)系證明勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是用硬紙板做成的四個(gè)全等的直角三角形(兩精英家教網(wǎng)直角邊長(zhǎng)分別是a、b,斜邊長(zhǎng)為c)和一個(gè)邊長(zhǎng)為c的正方形,請(qǐng)你將它們拼成一個(gè)能證明勾股定理的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖是用硬紙板做成的四個(gè)全等的直角三角形(兩直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c)和一個(gè)邊長(zhǎng)為c的正方形,請(qǐng)你將它們拼成一個(gè)能證明勾股定理的圖形,并利用此圖形證明勾股定理.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖是用硬紙板做成的四個(gè)全等的直角三角形(兩直角邊長(zhǎng)分別是a、b,斜邊長(zhǎng)為c)和一個(gè)正方形(邊長(zhǎng)為c).請(qǐng)你將它們拼成一個(gè)能驗(yàn)證勾股定理的圖形.
(1)畫(huà)出拼成的這個(gè)圖形的示意圖:
(2)用(1)中畫(huà)出的圖形驗(yàn)證勾股定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012屆安徽省安慶市八年級(jí)第二學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)卷 題型:解答題

如圖是用硬紙板做成的四個(gè)全等的直角三角形(兩直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c)和一個(gè)邊長(zhǎng)為c的正方形,請(qǐng)你將它們拼成一個(gè)能證明勾股定理的圖形,并利用此圖形證明勾股定理.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案