如圖,大海中有A和B兩個(gè)島嶼,為測(cè)量它們之間的距離,在海岸線PQ上點(diǎn)E處測(cè)得∠AEP=74°,∠BEQ=30°;在點(diǎn)F處測(cè)得∠AFP=60°,∠BFQ=60°,EF=1km。
(1)判斷AB、AE的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求兩個(gè)島嶼A和B之間的距離(結(jié)果精確到0.1km)。(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3. 49,sin76°≈0.97,cos76°≈0.24)
(1)相等;(2)3.6 km
【解析】
試題分析:(1)先根據(jù)題意證得EF=BF,再根據(jù)SAS即可證明△AEF≌△ABF,從而求得結(jié)果;
(2)作AH⊥PQ,垂足為H.設(shè)AE=x,在直角△AHF,直角△AEP中,利用三角函數(shù)表示出HE與HF,從而可得到關(guān)于x的方程,解方程即可得解.
(1)相等
∵∠BEQ=30°,∠BFQ=60°,
∴∠EBF=30°,
∴EF=BF.
又∵∠AFP=60°,
∴∠BFA=60°.
在△AEF與△ABF中,EF=BF,∠AFE=∠AFB,AF=AF,
∴△AEF≌△ABF,
∴AB=AE;
(2)作AH⊥PQ,垂足為H
設(shè)AE=x,則AH=xsin74°,HE=xcos74°,HF=xcos74°+1.
Rt△AHF中,AH=HF·tan60°
∴xcos74°=(xcos74°+1)·tan60°,
即0.96x=(0.28x+1)×1.73,
∴x≈3.6,即AB≈3.6km.
答:兩個(gè)島嶼A和B之間的距離為3.6km.
考點(diǎn):全等三角形的判定和性質(zhì),解直角三角形的應(yīng)用
點(diǎn)評(píng):解直角三角形的應(yīng)用是初中數(shù)學(xué)的重點(diǎn),是中考必考題,一般難度不大,需熟練掌握.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 |
12 |
13 |
5 |
13 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2012屆江蘇省無(wú)錫市九年級(jí)中考模擬考試數(shù)學(xué)卷 題型:選擇題
(本小題滿分8分)
如圖,大海中有A和B兩個(gè)島嶼,為測(cè)量它們之間的距離,在海岸線PQ上點(diǎn)E處測(cè)得∠AEP=74°,∠BEQ=30°;在點(diǎn)F處測(cè)得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判斷AB、AE的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求兩個(gè)島嶼A和B之間的距離(結(jié)果精確到0.1km).(參考數(shù)據(jù):≈1.73,
sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源:2010年寧夏銀川市初一上學(xué)期期末數(shù)學(xué)卷 題型:解答題
(10分)
如圖,大海中有A和B兩個(gè)島嶼,為測(cè)量它們之間的距離,在海岸線PQ上點(diǎn)E處測(cè)得∠AEP=74°,∠BEQ=30°;在點(diǎn)F處測(cè)得∠AFP=60°,∠BFQ=60°,EF=1km.
(1)判斷AB、AE的數(shù)量關(guān)系,并說(shuō)明理由;
(2)求兩個(gè)島嶼A和B之間的距離(結(jié)果精確到0.1km).
(參考數(shù)據(jù):≈1.73,sin74°≈0.96,cos74°≈0.28,tan74°≈3.49,
sin76°≈0.97,cos76°≈0.24)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com