(2010•德州)如圖,在△ABC中,AB=AC,D是BC中點,AE平分∠BAD交BC于點E,點O是AB上一點,⊙O過A、E兩點,交AD于點G,交AB于點F.
(1)求證:BC與⊙O相切;
(2)當∠BAC=120°時,求∠EFG的度數(shù).

【答案】分析:(1)連接OE,證OE⊥BC即可.因為AD⊥BC,所以轉(zhuǎn)證OE∥AD.由AE平分∠BAD,OA=OE易得此結(jié)論.
(2)∠EFG=∠GAE=∠EAO=∠AEO.根據(jù)已知條件易得∠B=30°,∠EOB=60°.從而求解.
解答:(1)證明:連接OE.
∵AB=AC且D是BC中點,
∴AD⊥BC.
∵AE平分∠BAD,
∴∠BAE=∠DAE.
∵OA=OE,
∴∠OAE=∠OEA,
則∠OEA=∠DAE,
∴OE∥AD,
∴OE⊥BC,
∴BC是⊙O的切線.

(2)解:∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,AD⊥BC,EO∥AD,
∴∠BAD=∠EOB=60°且AE平分∠BAD,
∴∠EAO=∠EAG=30°
又∵∠EFG與∠GAE都對應(yīng)弧GE
∴∠EFG=∠GAE=30°(同弧所對的圓周角相等)
∴∠EFG=30°.
點評:此題考查了切線的判定、等腰三角形性質(zhì)等知識點,難度中等.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2010•德州)如圖,在△ABC中,AB=AC,D是BC中點,AE平分∠BAD交BC于點E,點O是AB上一點,⊙O過A、E兩點,交AD于點G,交AB于點F.
(1)求證:BC與⊙O相切;
(2)當∠BAC=120°時,則∠EFG=
30
30
度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《投影與視圖》(04)(解析版) 題型:選擇題

(2010•德州)如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是( )

A.
B.
C.a(chǎn)bπ
D.a(chǎn)cπ

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《圓》(14)(解析版) 題型:解答題

(2010•德州)如圖,在△ABC中,AB=AC,D是BC中點,AE平分∠BAD交BC于點E,點O是AB上一點,⊙O過A、E兩點,交AD于點G,交AB于點F.
(1)求證:BC與⊙O相切;
(2)當∠BAC=120°時,求∠EFG的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:2010年山東省德州市中考數(shù)學試卷(解析版) 題型:選擇題

(2010•德州)如圖是某幾何體的三視圖及相關(guān)數(shù)據(jù),則該幾何體的側(cè)面積是( )

A.
B.
C.a(chǎn)bπ
D.a(chǎn)cπ

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省宜昌市十四中中考數(shù)學模擬試卷(解析版) 題型:解答題

(2010•德州)如圖,點E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.

查看答案和解析>>

同步練習冊答案