9、已知直角梯形ABCD的四條邊長分別為AB=2,BC=CD=10,AD=6,過B、D兩點(diǎn)作圓,與BA的延長線交于點(diǎn)E,與CB的延長線交于點(diǎn)F,則BE-BF的值為
4
分析:延長CD交⊙O于點(diǎn)G,設(shè)BE,DG的中點(diǎn)分別為點(diǎn)M,N,則AM=DN,由割線定理,得BF=DG,再求得BE-BF的值.
解答:解:延長CD交⊙O于點(diǎn)G,
設(shè)BE,DG的中點(diǎn)分別為點(diǎn)M,N,則易知AM=DN,
∵BC=CD=10,由割線定理,易證BF=DG,
∴BE-BF=BE-DG=2(BM-DN)=2(BM-AM)=2AB=4.
故答案為:4.
點(diǎn)評:本題考查的是切割線定理,垂徑定理,在圓中常作的輔助線是過圓心作弦的垂線.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點(diǎn)P在BC上移動,則當(dāng)PA+PD取最小值時(shí),△A精英家教網(wǎng)PD中邊AP上的高為( 。
A、
2
17
17
B、
4
17
17
C、
8
17
17
D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=DC=5,點(diǎn)P在BC上移動,則PA+PD的最小值為
2
17
2
17

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•遼陽)已知直角梯形ABCD,AB∥CD,∠C=90°,AB=BC=
12
CD,E為CD的中點(diǎn).
(1)如圖(1)當(dāng)點(diǎn)M在線段DE上時(shí),以AM為腰作等腰直角三角形AMN,判斷NE與MB的位置關(guān)系和數(shù)量關(guān)系,請直接寫出你的結(jié)論;
(2)如圖(2)當(dāng)點(diǎn)M在線段EC上時(shí),其他條件不變,(1)中的結(jié)論是否成立?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD如圖放置在平面直角坐標(biāo)系中,∠DCB=30°,AB邊在y軸上,點(diǎn)D的橫坐標(biāo)為6,CQ⊥x軸,垂足為Q,點(diǎn)Q的橫坐標(biāo)為12,過CD的直線l交x軸于點(diǎn)E,E點(diǎn)坐標(biāo)為(18,0).
(1)求直線l的解析式,以及點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)P為線段CD上一動點(diǎn),連結(jié)PQ、OP,探究△POQ的周長,并求出當(dāng)周長最小時(shí),P的坐標(biāo)及此時(shí)的該三角形的周長;
(3)點(diǎn)N從點(diǎn)Q(12,0)出發(fā),沿著x軸以每秒1個(gè)單位長度的速度向點(diǎn)O運(yùn)動,同時(shí)另一動點(diǎn)M從點(diǎn)B開始沿B-C-D-A的方向繞梯形ABCD運(yùn)動,運(yùn)動速度為每秒為2個(gè)單位長度,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒,連結(jié)MO和MN,試探究當(dāng)t為何值時(shí)MO=MN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知直角梯形ABCD中AD∥BC,∠B=90°,AB=8,AD=24,BC=26,點(diǎn)P從A點(diǎn)出發(fā),沿AD邊以1的速度向點(diǎn)D運(yùn)動,點(diǎn)Q從點(diǎn)C開始沿CB邊以3的速度向點(diǎn)B運(yùn)動,P、Q分別從點(diǎn)A、C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t.
(1)當(dāng)t為何值時(shí),四邊形PQCD為平行四邊形?
(2)當(dāng)t為何值時(shí),四邊形PQCD為等腰梯形?

查看答案和解析>>

同步練習(xí)冊答案