【題目】探究:如圖①,在△ABC中,AB=AC,∠ABC=60°,延長BA至點(diǎn)D,延長CB至點(diǎn)E,使BE=AD,連結(jié)CD,AE,求證:△ACE≌△CBD.
應(yīng)用:如圖②,在菱形ABCF中,∠ABC=60°,延長BA至點(diǎn)D,延長CB至點(diǎn)E,使BE=AD,連結(jié)CD,EA,延長EA交CD于點(diǎn)G,求∠CGE的度數(shù).
【答案】探究:證明見試題解析;應(yīng)用:∠CGE=60°.
【解析】試題分析:探究:由AB=AC,∠ABC=60°,得到△ABC是等邊三角形,從而有BC=AC,∠ACB=∠ABC,由BE=AD,得到CE=BD,即可得到△ACE≌△CBD;
應(yīng)用:如圖,連接AC,易知△ABC是等邊三角形,由探究可知△ACE≌△CBD,得到∠E=∠D,由∠BAE=∠DAG,得到∠CGE=∠ABC,由∠ABC=60°,即可得到結(jié)論.
試題解析:探究:∵AB=AC,∠ABC=60°,∴△ABC是等邊三角形,∴BC=AC,∠ACB=∠ABC,∵BE=AD,∴BE+BC=AD+AB,即CE=BD,在△ACE和△CBD中,∵CE=BD,∠ACB=∠ABC,BC=AC,∴△ACE≌△CBD(SAS);
應(yīng)用:如圖,連接AC,易知△ABC是等邊三角形,由探究可知△ACE≌△CBD,∴∠E=∠D,∵∠BAE=∠DAG,∴∠E+∠BAE=∠D+∠DAG,∴∠CGE=∠ABC,∵∠ABC=60°,∴∠CGE=60°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,D為BC延長線上的一點(diǎn),以AD為邊向形外作等邊△ADE,連接CE.(1) 求證:△ACE≌△ABD;
(2) 在點(diǎn)D運(yùn)動(dòng)過程中,∠DCE的度數(shù)是否發(fā)生變化?若不變化,求它的度數(shù);若變化,說明理由;
(3) 若∠BAE=150°,△ABD的面積為6,求四邊形ACDE的面積.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)不透明的口袋里裝有紅、黃、藍(lán)三種顏色的球(除顏色外其余都相同),
其中紅球有1個(gè),藍(lán)球有1個(gè),現(xiàn)從中任意摸出一個(gè)是紅球的概率為.
(1)求袋中黃球的個(gè)數(shù).
(2)第一次摸出一個(gè)球(放回),第二次再摸一個(gè)球,請(qǐng)用畫樹狀圖或列表法求兩次摸到都是紅球的概率.
(3)若規(guī)定每次摸到紅球得5分,每次摸到黃球得3分,每次摸到藍(lán)球得1分,小芳摸6次球(每次摸1個(gè)球,摸后放回)合計(jì)得20分,請(qǐng)直接寫出小芳有哪幾種摸法?(不分球顏色的先后順序)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與y軸交于點(diǎn)C,與x軸交于點(diǎn)A和點(diǎn)B.若N點(diǎn)是AC所在直線下方該拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)N作MN平行于軸,交AC于點(diǎn)M.
(1) 求直線AC的解析式;
(2)當(dāng)點(diǎn)N運(yùn)動(dòng)至拋物線的頂點(diǎn)時(shí),求此時(shí)MN的長;
(3)設(shè)點(diǎn)N的橫坐標(biāo)為t,MN的長度為l;
①求l與t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②l是否存在最值,有如有寫出最值;
(4)點(diǎn)D是點(diǎn)B關(guān)于軸的對(duì)稱點(diǎn).拋物線上是否有點(diǎn)N,使△ODM是等腰三角形?
若存在,請(qǐng)求出此時(shí)△CAN的面積;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一路線從A地前往B地,甲以千米/時(shí)的速度勻速行駛,途中出現(xiàn)故障后停車維修,修好后以千米/時(shí)的速度繼續(xù)行駛;乙在甲出發(fā)2小時(shí)后勻速前往B地,比甲早30分鐘到達(dá).到達(dá)B地后,乙按原速度返回A地,甲以千米/時(shí)的速度返回A地.設(shè)甲、乙兩車與A地相距s(千米),甲車離開A地的時(shí)間為t(時(shí)),s與t之間的函數(shù)圖象如圖所示.
(1)求的值.
(2)求甲車維修所用時(shí)間.
(3)求兩車在途中第二次相遇時(shí)t的值.
(4)請(qǐng)直接寫出當(dāng)兩車相距40千米時(shí),t的值或取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,AB=AC,AD=AE,∠BAC=∠DAE=α,BE與AC、CD分別相交于點(diǎn)N、M.
(1)求證:BE=CD;
(2)求∠BMC的大小.(用α表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一項(xiàng)工程,甲、乙兩公司合做,12天可以完成,共需付工費(fèi)102000元;如果甲、乙兩公司單獨(dú)完成此項(xiàng)公程,乙公司所用時(shí)間是甲公司的1.5倍,乙公司每天的施工費(fèi)比甲公司每天的施工費(fèi)少1500元。
(1)甲、乙公司單獨(dú)完成此項(xiàng)工程,各需多少天?
(2)若讓一個(gè)公司單獨(dú)完成這項(xiàng)工程,哪個(gè)公司施工費(fèi)較少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com