如圖,二次函數(shù)數(shù)學公式與x軸交于A、B兩點,與y軸交于C點,點P從A點出發(fā),以1個單位每秒的速度向點B運動,點Q同時從C點出發(fā),以相同的速度向y軸正方向運動,運動時間為t秒,點P到達B點時,點Q同時停止運動.設(shè)作業(yè)寶PQ交直線AC于點G.
(1)求直線AC的解析式;
(2)連接PC,設(shè)△PQC的面積為S,求S關(guān)于t的函數(shù)解析式;
(3)在y軸上找一點M,使△MAC和△MBC都是等腰三角形,直接寫出所有滿足條件的M點的坐標.

解:(1)令y=0,則-x2+2=0,
解得x1=-2,x2=2,
所以,點A(-2,0),B(2,0),
令x=0,則y=2,
所以,點C的坐標是(0,2),
設(shè)直線AC的解析式為y=kx+b,
,
解得
所以,直線AC的解析式為y=x+2;

(2)①點P在OA上,即0<t<2時,
∵點P、Q的速度都是每秒1個單位,
∴OP=2-t,OQ=t,
∴△PQC的面積S=t(2-t)=-t2+t,
②點P在OB上,即2<t≤4時,
∵點P、Q的速度都是每秒1個單位,
∴OP=t-2,OQ=t,
∴△PQC的面積S=t(t-2)=t2-t,
∴S=;

(3)∵A(-2,0),B(2,0),C(0,2),
∴OA=OB=OC=2,
根據(jù)勾股定理,AC===2,
如圖,①點M為坐標原點(0,0)時,AC、BC為底邊,
②AC、BC為底邊時,若OM=OC=2,則點M(0,-2),
若CM=AC=2,則OM=CM-OC=2-2,
此時點M(0,2-2),
或OM=CM+OC=2+2,
此時點M(0,2+2),
所以,點M的坐標為(0,0)或(0,-2)或(0,2-2)或(0,2+2).
分析:(1)根據(jù)二次函數(shù)解析式求出點A、B、C的坐標,然后設(shè)直線AC的解析式為y=kx+b,利用待定系數(shù)法求一次函數(shù)解析式解答即可;
(2)分點P在OA上與OB上兩種情況分別表示出OP、CQ的長度,再根據(jù)三角形的面積公式列式整理即可得解;
(3)根據(jù)勾股定理列式求出AC的長度,再分AC、BC是底邊與腰討論求解即可.
點評:本題是二次函數(shù)綜合題型,主要考查了待定系數(shù)法求一次函數(shù)解析式,三角形的面積,等腰三角形的性質(zhì),(2)要分兩段求解并且t的值不能取2,(3)要分情況討論,作出圖形更形象直觀.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2012年遼寧省盤錦市中考數(shù)學模擬試卷(三)(解析版) 題型:解答題

如圖,二次函數(shù)與x軸交于A、B兩點,與y軸交于C點,點P從A點出發(fā),以1個單位每秒的速度向點B運動,點Q同時從C點出發(fā),以相同的速度向y軸正方向運動,運動時間為t秒,點P到達B點時,點Q同時停止運動.設(shè)PQ交直線AC于點G.
(1)求直線AC的解析式;
(2)設(shè)△PQC的面積為S,求S關(guān)于t的函數(shù)解析式;
(3)在y軸上找一點M,使△MAC和△MBC都是等腰三角形.直接寫出所有滿足條件的M點的坐標;
(4)過點P作PE⊥AC,垂足為E,當P點運動時,線段EG的長度是否發(fā)生改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年湖北省咸寧市溫泉中學中考數(shù)學調(diào)研試卷(一)(解析版) 題型:解答題

如圖,二次函數(shù)與x軸交于A、B兩點,與y軸交于C點,點P從A點出發(fā),以1個單位每秒的速度向點B運動,點Q同時從C點出發(fā),以相同的速度向y軸正方向運動,運動時間為t秒,點P到達B點時,點Q同時停止運動.設(shè)PQ交直線AC于點G.
(1)求直線AC的解析式;
(2)設(shè)△PQC的面積為S,求S關(guān)于t的函數(shù)解析式;
(3)在y軸上找一點M,使△MAC和△MBC都是等腰三角形.直接寫出所有滿足條件的M點的坐標;
(4)過點P作PE⊥AC,垂足為E,當P點運動時,線段EG的長度是否發(fā)生改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年湖北省鄂州市宅俊中學中考數(shù)學模擬試卷(一)(解析版) 題型:解答題

如圖,二次函數(shù)與x軸交于A、B兩點,與y軸交于C點,點P從A點出發(fā),以1個單位每秒的速度向點B運動,點Q同時從C點出發(fā),以相同的速度向y軸正方向運動,運動時間為t秒,點P到達B點時,點Q同時停止運動.設(shè)PQ交直線AC于點G.
(1)求直線AC的解析式;
(2)設(shè)△PQC的面積為S,求S關(guān)于t的函數(shù)解析式;
(3)在y軸上找一點M,使△MAC和△MBC都是等腰三角形.直接寫出所有滿足條件的M點的坐標;
(4)過點P作PE⊥AC,垂足為E,當P點運動時,線段EG的長度是否發(fā)生改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年江蘇省無錫市江陰市九年級(下)期中數(shù)學試卷(解析版) 題型:解答題

如圖,二次函數(shù)與x軸交于A、B兩點,與y軸交于C點,點P從A點出發(fā),以1個單位每秒的速度向點B運動,點Q同時從C點出發(fā),以相同的速度向y軸正方向運動,運動時間為t秒,點P到達B點時,點Q同時停止運動.設(shè)PQ交直線AC于點G.
(1)求直線AC的解析式;
(2)設(shè)△PQC的面積為S,求S關(guān)于t的函數(shù)解析式;
(3)在y軸上找一點M,使△MAC和△MBC都是等腰三角形.直接寫出所有滿足條件的M點的坐標;
(4)過點P作PE⊥AC,垂足為E,當P點運動時,線段EG的長度是否發(fā)生改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省黃岡市數(shù)學中考精品試卷之五(解析版) 題型:解答題

(2012•紹興三模)如圖,二次函數(shù)與x軸交于A、B兩點,與y軸交于C點,點P從A點出發(fā),以1個單位每秒的速度向點B運動,點Q同時從C點出發(fā),以相同的速度向y軸正方向運動,運動時間為t秒,點P到達B點時,點Q同時停止運動.設(shè)PQ交直線AC于點G.
(1)求直線AC的解析式;
(2)設(shè)△PQC的面積為S,求S關(guān)于t的函數(shù)解析式;
(3)在y軸上找一點M,使△MAC和△MBC都是等腰三角形.直接寫出所有滿足條件的M點的坐標;
(4)過點P作PE⊥AC,垂足為E,當P點運動時,線段EG的長度是否發(fā)生改變,請說明理由.

查看答案和解析>>

同步練習冊答案