【題目】為了美化校園,學校決定利用現(xiàn)有的2660盆甲種花卉和3000盆乙種花卉搭配A、B兩種園藝造型共50個擺放在校園內(nèi),已知搭配一個A種造型需甲種花卉70盆,乙種花卉30盆,搭配一個B種造型需甲種花卉40盆,乙種花卉80盆.則符合要求的搭配方案有幾種( 。
A. 2B. 3C. 4D. 5
科目:初中數(shù)學 來源: 題型:
【題目】某測繪公司借助大型無人飛機航拍測繪.如圖,無人飛機從C處放飛迅速爬升到點A處,繼續(xù)水平飛行400米到達B處共需150秒,在地面C處同一方向上分別測得A處的仰角為75°,B處的仰角為30°.己知無人飛機的水平飛行速度為4米/秒,求這架無人飛機從C到A的爬升速度及水平飛行高度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,過上到點的距離為1,3,5,7,…的點作的垂線,分別與相交,得到圖所示的陰影梯形,它們的面積依次記為,,….則(1)_______________;(2)通過計算可得______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】今年疫情防控期間,我市一家服裝有限公司生產(chǎn)了一款服裝,為對比分析以前實體商店和現(xiàn)在網(wǎng)上商店兩種途徑的銷售情況,進行了為期30天的跟蹤調(diào)查.其中實體商店的日銷售量(百件)與時間(為整數(shù),單位:天)的部分對應(yīng)值如下表所示;網(wǎng)上商店的日銷售量(百件)與時間(為整數(shù),單位:天)的關(guān)系如圖所示.
時間(天) | 0 | 6 | 10 | 12 | 18 | 20 | 24 | 30 |
日銷售量(百件) | 0 | 72 | 100 | 108 | 108 | 100 | 72 | 0 |
(1)請你在一次函數(shù)、二次函數(shù)和反比例函數(shù)中,選擇合適的函數(shù)反映與的變化規(guī)律,并求出與的函數(shù)關(guān)系式及自變量的取值范圍;
(2)求與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)在跟蹤調(diào)查的30天中,設(shè)實體商店和網(wǎng)上商店的日銷售總量為(百件),求與的函數(shù)關(guān)系式;當為何值時,日銷售量達到最大,并求出此時的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某水產(chǎn)養(yǎng)殖戶開發(fā)一個三角形狀的養(yǎng)殖區(qū)域,A、B、C三點的位置如圖所示.已知∠CAB=105°,∠B=45°,AB=100米.(參考數(shù)據(jù):≈1.41,≈1.73,sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,結(jié)果保留整數(shù))
(1)求養(yǎng)殖區(qū)域△ABC的面積;
(2)養(yǎng)殖戶計劃在邊BC上選一點D,修建垂釣棧道AD,測得∠CAD=40°,求垂釣棧道AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)
(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標原點),若△BOC的面積為3,求該一次函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的重要思想,某森林保護區(qū)開展了尋找古樹活動,如圖,在一個坡度(坡比)的山坡上發(fā)現(xiàn)一棵古樹,測得古樹低端到山腳點的距離米,在距山腳點水平距離米的點處,測得古樹頂端的仰角(古樹與山坡的剖面、點在同一平面內(nèi),古樹與直線垂直),求古樹的高度約為多少米? (結(jié)果保留一位小數(shù),參考數(shù)據(jù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】年初,一場突如其來的冠狀肺炎肆虐全國,學生經(jīng)歷了“停課不停學”,疫情逐漸消退.某校在開學前夕,準備買一批酒精和消毒液對校園進行消毒,經(jīng)調(diào)查,若購買箱酒精和箱消毒液共需元,購買箱酒精和箱消毒液共需元.
(1)求酒精和消毒液的單價;
(2)根據(jù)學校實際情況,需從該商店一次性購買酒精和消毒液共箱,總費用不超過元,那么最多可以購買多少箱消毒液?
(3)由于分階段開學,九年級學生第一批開學,年級組長張老師準備用元購買一批酒精和消毒液進行先期消毒,在錢剛好用完的條件下,他有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,無人機在600米高空的P點,測得地面A點和建筑物BC的頂端B的俯角分別為60°和70°,已知A點和建筑物BC的底端C的距離為286米,求建筑物BC的高.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.73,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com