將矩形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,然后展開(kāi),折痕為EF,連接AE、CF,求證:四邊形AECF是菱形.

證明:根據(jù)對(duì)折可知,AF=CF,AE=CE,∠EAF=∠ECF,
∵四邊形ABCD是矩形,
∴∠B=∠D,AB=CD
∴△ABE≌△CDF,
∴AE=CF,
∴AE=CE=CF=AF,
∴四邊形AECF是菱形.
分析:根據(jù)已知條件判定△ABE≌△CDF,進(jìn)而證明四邊形AECFD的四邊相等問(wèn)題得證.
點(diǎn)評(píng):本題主要考查菱形的判定方法:四條邊都相等的四邊形是菱形和全等三角形的判定方法以及圖形的翻折變換(折疊問(wèn)題)實(shí)質(zhì)上就是軸對(duì)稱變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、小明打算用如圖的矩形紙片ABCD折出一個(gè)等邊三角形.他的操作步驟是:
①先把矩形紙片對(duì)折后展開(kāi),并設(shè)折痕為AM;
②把B點(diǎn)疊在折痕線上,得到Rt△AB1E;
③沿著EB1線折疊,得到△EAF.小明認(rèn)為,所得的△EAF即為等邊三角形.
試問(wèn),小明的結(jié)論是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)你給出一種將矩形紙片ABCD折為一個(gè)等邊三角形的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•松北區(qū)三模)如圖,將矩形紙片ABCD折痕,使點(diǎn)D落在點(diǎn)線段AB的中點(diǎn)F處.若AB=4,則邊BC的長(zhǎng)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

小明打算用如圖的矩形紙片ABCD折出一個(gè)等邊三角形.他的操作步驟是:
①先把矩形紙片對(duì)折后展開(kāi),并設(shè)折痕為MN;
②把B點(diǎn)疊在折痕線上,得到Rt△AB1E;
③將Rt△A B1E沿著AB1線折疊,得到△EAF.小明認(rèn)為,所得的△EAF即為等邊三角形.
試問(wèn),小明的結(jié)論是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)你給出一種將矩形紙片ABCD折為一個(gè)等邊三角形的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圖形的對(duì)稱》(02)(解析版) 題型:解答題

(2003•資陽(yáng))小明打算用如圖的矩形紙片ABCD折出一個(gè)等邊三角形.他的操作步驟是:
①先把矩形紙片對(duì)折后展開(kāi),并設(shè)折痕為MN;
②把B點(diǎn)疊在折痕線上,得到Rt△AB1E;
③將Rt△A B1E沿著AB1線折疊,得到△EAF.小明認(rèn)為,所得的△EAF即為等邊三角形.
試問(wèn),小明的結(jié)論是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)你給出一種將矩形紙片ABCD折為一個(gè)等邊三角形的方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年四川省資陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•資陽(yáng))小明打算用如圖的矩形紙片ABCD折出一個(gè)等邊三角形.他的操作步驟是:
①先把矩形紙片對(duì)折后展開(kāi),并設(shè)折痕為MN;
②把B點(diǎn)疊在折痕線上,得到Rt△AB1E;
③將Rt△A B1E沿著AB1線折疊,得到△EAF.小明認(rèn)為,所得的△EAF即為等邊三角形.
試問(wèn),小明的結(jié)論是否正確?若正確,請(qǐng)給予證明;若不正確,請(qǐng)你給出一種將矩形紙片ABCD折為一個(gè)等邊三角形的方法.

查看答案和解析>>

同步練習(xí)冊(cè)答案