【題目】如圖,一艘油輪在海中航行,在A點看到小島B在A的北偏東25°方向距離60海里處,油輪沿北偏東70°方向航行到C處,看到小島B在C的北偏西50°方向,則油輪從A航行到C處的距離是( )海里.(結果保留整數)(參考數據:≈1.41,≈1.74,≈2.45)
A.66.8B.67C.115.8D.116
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,AB=DC,AD=3cm,BC=7cm,∠B=60°,P為BC邊上一點(不與B,C重合),連接AP,過P點作PE交DC于E,使得∠APE=∠B.
(1)求證:△ABP∽△PCE;
(2)求AB的長;
(3)在邊BC上是否存在一點P,使得DE:EC=5:3?如果存在,求BP的長;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=﹣x2+2x+3與x軸交于點A,B(點A在點B的左邊),與y軸交于點C.
(1)如圖1,點P,Q都在直線BC上方的拋物線上,且點P的橫坐標比點Q的橫坐標小1,直線PQ與x軸交于點D,過點P,Q作直線BC的垂線,垂足分別為點E,F.當PE+QF的值最大時,將四邊形PEFQ沿射線PQ方向平移,記平移過程中的四邊形PEFQ為P1E1F1Q1,連接CP1,P1F1,求CP1+P1F1+Q1D的最小值,并求出對應的點Q1的坐標.
(2)如圖2,對于滿足(1)中條件的點Q1,將線段AQ1繞原點O順時針旋轉90°,得線段A1Q2,點M是拋物線對稱軸上一點,點N是坐標平面內一點,點N1是點N關于直線A1Q2的對稱點,若以點A1,Q1,M,N1為頂點的四邊形是一個矩形,請直接寫出所有符合條件的點N的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】長城汽車銷售公司5月份銷售某種型號汽車,當月該型號汽車的進價為30萬元/輛,若當月銷售量超過5輛時,每多售出1輛,所有售出的汽車進價均降低0.1萬元/輛.根據市場調查,月銷售量不會突破30臺.
(1)設當月該型號汽車的銷售量為x輛(x≤30,且x為正整數),實際進價為y萬元/輛,求y與x的函數關系式;
(2)已知該型號汽車的銷售價為32萬元/輛,公司計劃當月銷售利潤45萬元,那么該月需售出多少輛汽車?(注:銷售利潤=銷售價﹣進價)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知△ABC內接于以AB為直徑的⊙O,過點C作⊙O的切線交BA的延長線于點D,且DA∶AB=1∶2.
(1)求∠CDB的度數;
(2)在切線DC上截取CE=CD,連接EB,判斷直線EB與⊙O的位置關系,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校九年級數學興趣小組為了測得該校地下停車場的限高CD,在課外活動時間測得下列數據:如圖,從地面E點測得地下停車場的俯角為30°,斜坡AE的長為16米,地面B點(與E點在同一個水平線)距停車場頂部C點(A、C、B在同一條直線上且與水平線垂直)1.2米.
(1)試求該校地下停車場的高度AC;
(2)求CD的高度,一輛高為6米的車能否通過該地下停車場(=1.73,結果精確到0.1米).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某科技公司推出一款新的電子產品,該產品有三種型號.通過市場調研后,按三種型號受消費者喜愛的程度分別對A型、B型、C型產品在成本的基礎上分別加價20%,30%,45%出售(三種型號的成本相同).經過一個季度的經營后,發(fā)現(xiàn)C型產品的銷量占總銷量的,且三種型號的總利潤率為35%.第二個季度,公司決定對A型產品進行升級,升級后A產品的成本提高了25%,銷量提高了20%;B、C產品的銷量和成本均不變,且三種產品在二季度成本基礎上分別加價20%,30%,45%出售,則第二個季度的總利潤率為______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),拋物線與x軸的一個交點在點(3,0)和(4,0)之間.則下列結論
①a-b+c>0;②3a+b=0;
③b2=4a(c-n);
④一元二次方程ax2+bx+c=n-1有兩個不相等的實數根.
其中正確結論的個數是( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司投資新建了一商場,共有商鋪30間.據預測,當每間的年租金定為10萬元時,可全部租出.每間的年租金每增加5 000元,少租出商鋪1間.該公司要為租出的商鋪每間每年交各種費用1萬元,未租出的商鋪每間每年交各種費用5 000元.
(1)當每間商鋪的年租金定為13萬元時,能租出多少間?
(2)當每間商鋪的年租金定為多少萬元時,該公司的年收益(收益=租金-各種費用)為275萬元?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com