如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點(diǎn),過(guò)C作CD⊥AB于點(diǎn)D,CD交AE于點(diǎn)F,過(guò)C作CG∥AE交BA的延長(zhǎng)線于點(diǎn)G.連接OC交AE于點(diǎn)H。
(1)求證:GC⊥OC.
(2)求證:AF=CF.
(3)若∠EAB=30°,CF=2,求GA的長(zhǎng).
(1)證明詳見(jiàn)解析;(2)證明詳見(jiàn)解析;(3).
【解析】
試題分析:本題考查了圓的切線的判定:過(guò)半徑的外端點(diǎn)與半徑垂直的直線為圓的切線.也考查了圓周角定理、垂徑定理和等腰三角形的判定.(1)連結(jié)OC,由C是劣弧AE的中點(diǎn),由垂徑定理得OC⊥AE,而CG∥AE,所以CG⊥OC,然后根據(jù)切線的判定定理即可求解;(2)連結(jié)AC、BC,根據(jù)圓周角定理得∠ACB=90°,∠B=∠1,而CD⊥AB,則∠CDB=90°,根據(jù)等角的余角相等得到∠B=∠2,所以∠1=∠2,于是得到AF=CF;
(3)在Rt△ADF中,∠DAF=30°,F(xiàn)A=FC=2,根據(jù)含30度的直角三角形三邊的關(guān)系得到DF=1,AD=,再由AF∥CG,根據(jù)平行線分線段成比例得到DA:AG=DF:CF;然后把DF=1,AD=,CF=2代入計(jì)算即可求解.
試題解析:
(1)證明:如圖,連結(jié)OC,
∵C是劣弧AE的中點(diǎn),
∴OC⊥AE,
∵CG∥AE,
∴CG⊥OC,
∴CG是⊙O的切線;
(2)證明:連結(jié)AC、BC,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠2+∠BCD=90°,
而CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠2,
∵AC弧=CE弧,
∴∠1=∠B,
∴∠1=∠2,
∴AF=CF;
(3)解:在Rt△ADF中,∠DAF=30°,F(xiàn)A=FC=2,
∴DF=AF=1,
∴AD=DF=,
∵AF∥CG,
∴DA:AG=DF:CF,即:AG=1:2,
∴AG=.
考點(diǎn):1、切線的判定;2、等腰三角形的判定與性質(zhì);3、垂徑定理;4、圓周角定理;4、相似三角形的判定與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com