【題目】如圖,AB是⊙O的直徑,∠BAC=90°,四邊形EBOC是平行四邊形,EB交⊙O于點D,連接CD并延長交AB的延長線于點F.
(1)求證:CF是⊙O的切線;
(2)若∠F=30°,EB=4,求圖中陰影部分的面積(結(jié)果保留根號和π)
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)欲證明CF是⊙O的切線,只要證明∠CDO=90°,只要證明△COD≌△COA即可.
(2)根據(jù)條件首先證明△OBD是等邊三角形,∠FDB=∠EDC=∠ECD=30°,推出DE=EC=BO=BD=OA由此根據(jù)S陰=2S△AOC﹣S扇形OAD即可解決問題.
試題解析:(1)證明:如圖連接OD.
∵四邊形OBEC是平行四邊形,∴OC∥BE,∴∠AOC=∠OBE,∠COD=∠ODB,∵OB=OD,∴∠OBD=∠ODB,∴∠DOC=∠AOC,在△COD和△COA中,∵OC=OC,∠COD=∠COA,OD=OA,∴△COD≌△COA,∴∠CAO=∠CDO=90°,∴CF⊥OD,∴CF是⊙O的切線.
(2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°,∵OD=OB,∴△OBD是等邊三角形,∴∠DBO=60°,∵∠DBO=∠F+∠FDB,∴∠FDB=∠EDC=30°,∵EC∥OB,∴∠E=180°﹣∠OBD=120°,∴∠ECD=180°﹣∠E﹣∠EDC=30°,∴EC=ED=BO=DB,∵EB=4,∴OB=OD═OA=2,在RT△AOC中,∵∠OAC=90°,OA=2,∠AOC=60°,∴AC=OAtan60°=,∴S陰=2S△AOC﹣S扇形OAD=2××2×﹣=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在正方形ABCD中,G是CD上一點,延長BC到E,使CE=CG,連接BG并延長交DE于F.
(1)求證:△BCG≌△DCE;
(2)將△DCE繞點D順時針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,邊長為2的等邊三角形AEF的頂點E,F(xiàn)分別在BC和CD上.下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD的外側(cè),以四邊形的邊為邊分別作四個小正方形,連接相鄰的兩個頂點,得到四個陰影三角形,則這四個陰影三角形的面積a、b、c、d滿足( )
A.a+b=c+d
B.a2+b2=c2+d2
C.a+c=b+d
D.a2+c2=b2+d2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖△ABC是等邊三角形,D,E分別是BC,AC上兩點且BD=CE,以AD為邊在AC一側(cè)作等邊△ADF.求證:EF∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)()的圖象與x軸交于A,B兩點,與y軸交于點C,且OA=OC.則下列結(jié)論:①abc<0;②;③ac﹣b+1=0;④OAOB=.
其中正確結(jié)論的個數(shù)是( )
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級進(jìn)行立定跳遠(yuǎn)訓(xùn)練,以下是劉明和張曉同學(xué)六次的訓(xùn)練成績(單位:m)
劉明:2.54,2.48,2.50,2.48,2.54,2.52
張曉:2.50,2.42,2.52,2.56,2.48,2.58
(1)填空:李明的平均成績是 . 張曉的平均成績是 .
(2)分別計算兩人的六次成績的方差,哪個人的成績更穩(wěn)定?
(3)若預(yù)知參加年級的比賽能跳過2.55米就可能得冠軍,應(yīng)選哪個同學(xué)參加?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一組數(shù)據(jù)8,3,8,6,7,8,7的眾數(shù)和中位數(shù)分別是( )
A.8,6
B.7,6
C.7,8
D.8,7
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com