如圖,以O為圓心的同心圓中,大圓的弦切小圓于點(diǎn)C,兩圓的半徑分別是5cm3cm,則AB=(  )

A8cm   B 、4cm  C 、cm   D 、cm

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,以BC為直徑作Rt△ABC的外接圓,圓心為點(diǎn)P,在△ABC的同側(cè)又作正方形BCEF,BE、CF交于點(diǎn)為O,連接AO.
精英家教網(wǎng)(1)求證:點(diǎn)O在⊙P上且∠BAO=135°;
(2)如果AB=2,AO=4
2
,求BO及AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點(diǎn)O在直線l上,
AD
是以O(shè)為圓心的某圓上的一段弧,∠AOD=90°,分別過A、D兩點(diǎn)作l的垂線,垂足為B、C.
(1)當(dāng)點(diǎn)A、D在直線l的同側(cè)時(shí),試探索線段AB、BC、CD之間有怎樣的等量關(guān)系?請寫出你的結(jié)論并予以證明;當(dāng)點(diǎn)A、D在直線l的兩側(cè)時(shí),且AB≠CD時(shí),線段AB、BC、CD之間又有怎樣的等量關(guān)系?請直接寫出結(jié)論(不必證明).精英家教網(wǎng)
(2)如圖,
精英家教網(wǎng)
當(dāng)點(diǎn)A、D在直線l的同側(cè),如果AB=3,CD=4,點(diǎn)M是
AD
的中點(diǎn),MN⊥BC,垂足為點(diǎn)N,求MN的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:044

如圖,已知直線y = 2x(即直線)和直線(即直線),x軸相交于點(diǎn)A。點(diǎn)P從原點(diǎn)O出發(fā),向x軸的正方向作勻速運(yùn)動,速度為每秒1個(gè)單位,同時(shí)點(diǎn)QA點(diǎn)出發(fā),向x軸的負(fù)方向作勻速運(yùn)動,速度為每秒2個(gè)單位。設(shè)運(yùn)動了t.

(1)求這時(shí)點(diǎn)P、Q的坐標(biāo)(t表示).

(2)過點(diǎn)P、Q分別作x軸的垂線,與分別相交于點(diǎn)O1、O2(如圖16).

①以O1為圓心、O1P為半徑的圓與以O2為圓心、O2Q為半徑的圓能否相切?若能,求出t值;若不能,說明理由.

②以O1為圓心、P為一個(gè)頂點(diǎn)的正方形與以O2為中心、Q為一個(gè)頂點(diǎn)的正方形能否有無數(shù)個(gè)公共點(diǎn)?若能,求出t值;若不能,說明理由.(同學(xué)可在圖中畫草圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,以BC為直徑作Rt△ABC的外接圓,圓心為點(diǎn)P,在△ABC的同側(cè)又作正方形BCEF,BE、CF交于點(diǎn)為O,連接AO.
(1)求證:點(diǎn)O在⊙P上且∠BAO=135°;
(2)如果AB=2,AO=4數(shù)學(xué)公式,求BO及AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007-2008學(xué)年江蘇省蘇州市常熟市九年級(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,以BC為直徑作Rt△ABC的外接圓,圓心為點(diǎn)P,在△ABC的同側(cè)又作正方形BCEF,BE、CF交于點(diǎn)為O,連接AO.
(1)求證:點(diǎn)O在⊙P上且∠BAO=135°;
(2)如果AB=2,AO=4,求BO及AC的長.

查看答案和解析>>

同步練習(xí)冊答案