如圖①,已知△ABC是等腰直角三角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).作正方形DEFG,使點(diǎn)A、C分別在DG和DE上,連接AE、BG.
1.試猜想線段BG和AE的數(shù)量關(guān)系,請(qǐng)直接寫出你得到的結(jié)論.
2.將正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)一定角度后(旋轉(zhuǎn)角度大于0°,小于或等于360°),如圖②,通過觀察或測(cè)量等方法判斷(1)中的結(jié)論是否仍然成立?如果成立,請(qǐng)予以證明;如果不成立,請(qǐng)說明理由.
3.若BC=DE=2,在(2)的旋轉(zhuǎn)過程中,當(dāng)AE為最大值時(shí),求AF的值.
見解析
解析:解:(1)BG=AE.
(2)成立.
如圖②,連接AD.
∵△ABC是等腰三直角角形,∠BAC=90°,點(diǎn)D是BC的中點(diǎn).
∴∠ADB=90°,且BD=AD.
∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.
∴△BDG≌△ADE,∴BG=AE.
(3)由(2)知,BG=AE,故當(dāng)BG最大時(shí),AE也最大.
因?yàn)檎叫蜠EFG在繞點(diǎn)D旋轉(zhuǎn)的過程中,G點(diǎn)運(yùn)動(dòng)的圖形是以點(diǎn)D為圓心,DG為半徑的圓,故當(dāng)正方形DEFG旋轉(zhuǎn)到G點(diǎn)位于BC的延長線上(即正方形DEFG繞點(diǎn)D逆時(shí)針方向旋轉(zhuǎn)270°)時(shí),BG最大,如圖③.
若BC=DE=2,則AD=1,EF=2.
在Rt△AEF中,AF 2=AE 2+EF 2=(AD+DE)2+EF 2=(1+2)2+2 2=13.
∴AF=.
即在正方形DEFG旋轉(zhuǎn)過程中,當(dāng)AE為最大值時(shí),AF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com