如圖,直線y=-x+1與x軸交于點A,與y軸交于點B,以AB為邊在第一象限內(nèi)作正△ABC.
(1)求點C的坐標;
(2)把△ABO沿直線AC翻折,點B落在點D處,點D是否在經(jīng)過點C的反比例函數(shù)的圖象上?說明理由;
(3)連接CD,判斷四邊形ABCD是什么四邊形?說明理由.

【答案】分析:(1)用特殊角的三角函數(shù)值及等邊三角形的性質(zhì)求出C的坐標;
(2)根據(jù)反比例函數(shù)的解析式,求出點D在過點C的反比例函數(shù)的圖象上;
(3)根據(jù)菱形的性質(zhì)判斷出四邊形ABCD是菱形.
解答:解:(1)∵直線y=-x+1與x軸交于點A(,0),與y軸相交于點B(0,1),
∴tan∠BAO==,
∴∠BAO=30°,
∵△ABC為正三角形,
∴∠BAC=60°,
∴∠CAO=90°,
∵AB=AC=2,
∴點C的坐標為(,2);

(2)過C的反比例函數(shù)解析式為y=,
點D與B(0,1)關(guān)于直線AC:x=對稱,
∴點D坐標為(,1),
∴點D在過點C的反比例函數(shù)的圖象上;

(3)四邊形ABCD是菱形.
連接BD,點B與D關(guān)于直線AC對稱,
∴BD⊥AC,
∵△ABC是正三角形,
∴A、C關(guān)于BD對稱,
故ABCD的對角線AC與BD互相垂直平分,
∴四邊形ABCD是菱形.
點評:綜合了特殊角的三角函數(shù)值,反比例函數(shù)的解析式,菱形及等邊三角形的性質(zhì),是一道綜合性較好的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,直線:y1=kx+b與拋物線:y2=x2+bx+c交于點A(-2,4),B(8,2).精英家教網(wǎng)
(1)求出直線解析式;
(2)求出使y1>y2的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、如圖,直線a、b都與直線c相交,給出下列條件:(1)∠l=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判斷a∥b的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,直線AB、CD相交于點E,EF⊥AB于E,若∠CEF=59°,則∠AED的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,直線y=6-x交x軸、y軸于A、B兩點,P是反比例函數(shù)y=
4
x
(x>0)
圖象上位于直線下方的一點,過點P作x軸的垂線,垂足為點M,交AB于點E,過點P作y軸的垂線,垂足為點N,交AB于點F.則AF•BE=( 。
A、8
B、6
C、4
D、6
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

17、如圖,直線a∥c,b∥c,直線d與直線a、b、c相交,已知∠1=60°,求∠2、∠3的度數(shù)(可在圖中用數(shù)字表示角).

查看答案和解析>>

同步練習(xí)冊答案