如圖,AB是⊙O直徑,D為⊙O上一點,AT平分∠BAD交⊙O于點T,過T作AD的垂線交AD的延長線于點C.

(1)求證:CT為⊙O的切線;
(2)若⊙O半徑為2,CT=,求AD的長.
(1)證明見試題解析;(2)2.

試題分析:(1)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個銳角互余,證得CT⊥OT,CT為⊙O的切線;
(2)證明四邊形OTCE為矩形,求得OE的長,在直角△OAE中,利用勾股定理即可求解.
試題解析:(1)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;
(2)解:過O作OE⊥AD于E,則E為AD中點,又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,,∴AD=2AE=2.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,破殘的圓形輪片上,弦AB的垂直平分線交弧AB于C,交弦AB于D.

(1)求作此殘片所在的圓的圓心(不寫作法,保留作圖痕跡);
(2)若AB=8cm,CD=2cm,求(1)中所作圓的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖AB是⊙O的直徑,PA切⊙O于A,OP交⊙O于C,連接BC,若∠P=30度,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個圓錐的高為cm,側(cè)面展開圖是半圓.

求:(1)圓錐的母線長與底面半徑之比;
(2)求∠BAC的度數(shù);
(3)圓錐的側(cè)面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖BC是⊙O的直徑,AD切⊙O于A,若∠C=40°,則∠DAC的度數(shù)是(   )
A.50°B.40°C.25°D.20°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,⊙O的半徑長為10cm,弦AB=16cm,則圓心O到弦AB的距離為 (        )
A.4 cmB.5 cmC.6 cmD.7 cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,A、B、C三點在⊙O上,且∠AOB=80°,則∠ACB等于(   )

A.100°      B.80°   C.50°    D.40°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題正確的是 (      )
A.三點可以確定一個圓;
B.以定點為圓心, 定長為半徑可確定一個圓;
C.頂點在圓上的三角形叫圓的外接三角形;
D.等腰三角形的外心一定在這個三角形內(nèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將邊長為1cm的等邊三角形ABC沿直線l向右翻動(不滑動),點B從開始到結(jié)束,所經(jīng)過路徑的長度為( 。
A.cmB.cm
C.3cmD.cm

查看答案和解析>>

同步練習冊答案