【題目】如圖,在ABC中,ABAC,以AB為直徑的⊙O分別與BC,AC交于點DE,過點DDFAC于點F.

(1)判斷DF與是⊙O的位置關(guān)系,并證明你的結(jié)論。

(2)若⊙O的半徑為4CDF22.5°,求陰影部分的面積.

【答案】1)詳見解析;(28.

【解析】試題分析:(1)OD,AD,利用ODAC證明ODDF.(2)利用扇形面積減去三角形面積求陰影部分面積.

試題解析:

1)相切。證明:如圖,連OD,AD

AB⊙O的直徑,ADBC,

ABAC,DBC的中點,

OA=OBODABC的中位線,

ODACDFAC,ODDF,

DFO的切線.

(2)解:∵∠CDF22.5°DFAC,∴∠C67.5°

∴∠BAC2∠DAC45°,

連接OE,則BOE2∠BAC90°,∴∠AOE90°,

S陰影×4×48.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】雙峰縣教育局要求各學校加強對學生的安全教育,全縣各中小學校引起高度重視,小剛就本班同學對安全知識的了解程度進行了一次調(diào)查統(tǒng)計.他將統(tǒng)計結(jié)果分為三類,A:熟悉;B:了解較多;C:一般了解。圖和圖是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

(1)求小剛所在的班級共有多少名學生;

(2)在條形圖中,將表示“一般了解”的部分補充完整‘’

(3)在扇形統(tǒng)計圖中,計算“了解較多”部分所對應的扇形圓心角的度數(shù);

(4)如果小剛所在年級共1000名同學,請你估算全年級對安全知識“了解較多”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,點從點出發(fā)沿方向以的速度向點勻速運動,同時點從點出發(fā)沿方向以的速度向點勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設點運動的時間是.過點于點連結(jié)

1)求證:

2)四邊形能夠成為菱形嗎?如果能,求出相應的值,如果不能,說明理由;

3)當為何值時,為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在三角形ABC中,點DBC上,DEABE,點FAB上,在CF的延長線上取一點G,連接AG.

(1)如圖1,若∠GAB=B,GAC+EDB=180°,求證:ABAC.

(2)如圖2.(1)的條件下,GAC的平分線交CG于點M,ACB的平分線交AB于點N,當∠AMCANC=35°時,求∠AGC的度數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應用,催生了快遞行業(yè)的高速發(fā)展.阜陽市某家快遞公司,20173月份與5月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.

(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率?

(2) 如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務員能否完成20176月份的快遞投遞任務?如果不能,請問至少需要增加幾名業(yè)務員?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊長和寬分別為60厘米和40厘米的長方形鐵皮,要在它的四角截去四個相等的小正方形,折成一個無蓋的長方體水槽,使它的底面積為800平方厘米.求截去正方形的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】期中考試臨近,某校初二年級教師對復習課中學生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

1)在這次評價中,一共抽查了_________名學生;

2)在扇形統(tǒng)計圖中,項目主動質(zhì)疑所在的扇形的圓心角的度數(shù)為______度;

3)請將頻數(shù)分布直方圖補充完整;

4)如果全市有8000名初二學生,那么在復習課中,獨立思考的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,ACB=90°,點D、F分別在AB、AC上,CF=CB,連接CD,將線段CD繞點C按順時針方向旋轉(zhuǎn)90°后得CE,連接EF

(1)求證:BCD≌△FCE;

(2)若EFCD,求BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】□ABCD中,E、F是對角線BD上不同的兩點,下列條件中,不能得出四邊形AECF一定為平行四邊形的是(

A. BE=DF B. AE=CF C. AF//CE D. BAE=DCF

查看答案和解析>>

同步練習冊答案