【題目】如圖,在△ABD中,AB=AD, 將△ABD沿BD翻折,使點A翻折到點C. E是BD上一點,且BE>DE,連結(jié)CE并延長交AD于F,連結(jié)AE.
(1)依題意補(bǔ)全圖形;
(2)判斷∠DFC與∠BAE的大小關(guān)系并加以證明;
(3)若∠BAD=120°,AB=2,取AD的中點G,連結(jié)EG,求EA+EG的最小值.
【答案】(1)見解析;(2)判斷:∠DFC=∠BAE. 證明見解析;(3)EA+EG的最小值為.
【解析】(1)將△ABD沿BD翻折,使點A翻折到點C.E是BD上一點,且BE>DE,連結(jié)CE并延長交AD于F,連結(jié)AE,據(jù)此畫圖即可;(2)根據(jù)△ABE≌△CBE(SAS),可得∠BAE=∠BCE.再根據(jù)AD∥BC,可得∠DFC=∠BCE,進(jìn)而得出∠DFC=∠BAE;(3)連接CG,AC,根據(jù)EC+EG≥CG可知,CG長就是EA+EG的最小值,根據(jù)△ACD為邊長為2的等邊三角形,G為AD的中點,運(yùn)用勾股定理即可得出CG=,進(jìn)而得到EA+EG的最小值.
(1)補(bǔ)全圖形如下:
(2)判斷:∠DFC=∠BAE.
證明:∵將△ABD沿BD翻折,使點A翻折到點C.
∴BC=BA=DA=CD. ∴四邊形ABCD為菱形.
∴∠ABD=∠CBD,AD∥BC.
又∵BE=BE,∴△ABE≌△CBE(SAS).
∴∠BAE=∠BCE.
∵AD∥BC,
∴∠DFC=∠BCE.
∴∠DFC=∠BAE.
(3)連CG, AC.
由軸對稱可知,EA+EG=EC+EG,
CG長就是EA+EG的最小值.
∵∠BAD=120°,四邊形ABCD為菱形,
∴∠CAD=60°.
∴△ACD為邊長為2的等邊三角形.
可求得CG=.
∴EA+EG的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直角梯形ABCD 沿直線DC方向平移可得直角梯形HFGE,如果AB=4,BC=9,BI=1.2,HI=3那么陰影面積為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點,與y軸交于點C(0,3).
(1)求拋物線的解析式;
(2)若點M是x軸下方的拋物線上的一個動點,過點M作MN⊥x軸,交直線BC于點N,求四邊形MBNA的最大面積,并求出點M的坐標(biāo);
(3)在拋物線上是否存在一點P,使△BCP為直角三角形?若存在,求出P點坐標(biāo),如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示,邊長為a的正方形中有一個邊長為b的小正方形,如圖2所示是由圖1中陰影部分拼成的一個正方形.
(1)設(shè)圖1中陰影部分面積為S1,圖2中陰影部分面積為S2.請直接用含a,b的代數(shù)式表示S1,S2;
(2)請寫出上述過程所揭示的乘法公式;
(3)試?yán)眠@個公式計算:(2+1)(22+1)(24+1)(28+1)+1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了更好的保護(hù)美麗圖畫的邛海濕地,西昌市污水處理廠決定先購買A、B兩型污水處理設(shè)備共20臺,對邛海濕地周邊污水進(jìn)行處理,每臺A型污水處理設(shè)備12萬元,每臺B型污水處理設(shè)備10萬元.已知1臺A型污水處理設(shè)備和2臺B型污水處理設(shè)備每周可以處理污水640噸,2臺A型污水處理設(shè)備和3臺B型污水處理設(shè)備每周可以處理污水1080噸.
(1)求A、B兩型污水處理設(shè)備每周分別可以處理污水多少噸?
(2)經(jīng)預(yù)算,市污水處理廠購買設(shè)備的資金不超過230萬元,每周處理污水的量不低于4500噸,請你列舉出所有購買方案,并指出哪種方案所需資金最少?最少是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,運(yùn)點P從點B出發(fā),沿路線BCD作勻速運(yùn)動,那么△ABP的面積與點P運(yùn)動的路程之間的函數(shù)圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,4AB=5AC,AD為△ABC的角平分線,點E在BC的延長線上,EF⊥AD于點F,點G在AF上,F(xiàn)G=FD,連接EG交AC于點H.若點H是AC的中點,則 的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com